Independent Electricity Market Operator

18-Month Outlook:

An Assessment of the Reliability of the Ontario Electricity System from October 2003 to March 2005

This page intentionally left blank.

Executive Summary

The Independent Electricity Market Operator (IMO) publishes quarterly assessments of the reliability of the Ontario electricity system over the next 18 months. This report presents the IMO assessment of the 18-month period from October 2003 to March 2005. This assessment is based on the IMO's forecast of electricity demand, information provided by Ontario generators on the supply available and the latest information on the configuration and capability of the transmission system.

Following the blackout of August 14, 2003, Ontario electricity consumers made important contributions in helping to maintain the supply-demand balance. Although power was restored to almost all customers by the end of the day following the blackout, supplies continued to be constrained for a further week. During the recovery period, prior to all generating units returning to service, there was a significant demand reduction in response to customer appeals. This substantial demand response is acknowledged and appreciated by the IMO. At times, despite the difficulties, we estimate that Ontarians were able to reduce their demand by as much as 4,500 MW. This proved to be an important contributor to avoiding the need for rotational load shedding.

Temporary generators that were installed in response to the request of the Ontario government were successfully used during the recovery period following the blackout. These temporary generators presently provide about 250 MW of capacity from five facilities within the province. This capacity is available to be used during emergency supply conditions. In this Outlook, these temporary generators are not included in the calculation of available reserve and the associated capacity has not been included in either of the two Resource Scenarios presented herein.

Updates since the last report

There are several updates in this Outlook from the quarterly Outlook published in June 2003.

This Outlook reflects changes to return-to-service plans for laid-up nuclear units. Bruce Unit 4 is expected to begin producing power and to be fully dispatchable in October. Bruce Unit 3 is expected to follow about one month after Unit 4. Pickering Unit 4 began producing power on August 21 as part of the commissioning process, and Ontario Power Generation (OPG) advises it will be fully available in September. OPG advises that the schedule for the return to service of the second Pickering A unit is under review. At this point in time, it is assumed that the unit will not be synchronized to the grid during the time frame of this report.

The risks associated with the return-to-service dates of units from long-term lay-up and planned outages were identified in the previous quarterly Outlook, and the IMO considers that some risk persists with the updated information. This risk is greatly diminished and reduces progressively as return-to-service milestones are met.

There have been substantial updates to the generator outage schedule since the last published report, resulting in some weeks with higher available resources, but with the majority of weeks having lower available resources.

The combination of a lower economic forecast and the inclusion of lower than expected actual demand translates into a demand forecast that is marginally lower than the previous forecast.

Resource Outlook

Two resource scenarios are considered in this Outlook – an Existing Resource Scenario and a Planned Resource Scenario. These are updates to the scenarios presented in the previous Outlook and are summarized below.

Existing Resource Scenario

Under the **Existing Resource Scenario**, Pickering Unit 4 is now included, and this represents a significant change from the previous Outlook. Under this scenario, reserve margins have improved from the previous Outlook and are positive for more weeks during the study period. Resource shortfalls which remain are greatest during the remaining months of 2003, and in the summer and fall of 2004 under peak demand conditions. Resource reductions due to a large maintenance outage during October 2003 together with the assumption that only existing resources are available in this scenario contribute to negative reserve margins during the fall of 2003. Other generator outages that have been planned to occur after October contribute to negative reserve margins in November and December of 2003. Resource reductions due to a large maintenance outage during the fall of 2004 contribute to negative reserve margins during the fall of a large maintenance outage during the fall of 2004 contribute to negative reserve margins during the fall of a large maintenance outage during the fall of 2004 contribute to negative reserve margins during the fall of a large maintenance outage during the fall of 2004 contribute to negative reserve margins during the fall of a large maintenance outage during the fall of 2004 contribute to negative reserve margins during the fall of 2004 contribute to negative reserve margins during the fall of 2004 contribute to negative reserve margins during the fall of 2004 contribute to negative reserve margins during the fall of 2004 contribute to negative reserve margins during the fall of 2004 contribute to negative reserve margins during the fall of 2004 contribute to negative reserve margins during that time period.

Negative reserve margins indicate that forecast reserve levels are below planning requirements. As such, planned generator outages during negative margin weeks are at risk of cancellation by the IMO for reliability purposes depending on their priority and the resource adequacy situation at the time their approval is being sought.

During most of the study period, a combination of high demand levels under extreme weather conditions and lower than forecast levels of available resources would lead to reliance on imports.

Planned Resource Scenario

The **Planned Resource Scenario** includes approximately 2,200 MW of additional generation resources that are scheduled to be placed in-service during the Outlook period and 300 MW of price-responsive demand, which was not included in the Existing Resource Scenario. The additional generation resources consist of new facilities currently under construction and two Bruce units returning to service, each assumed to be available on the dates provided by market participants.

Under the Planned Resource Scenario, the resource adequacy situation is significantly improved when compared to the Existing Resource Scenario. For most of the Outlook timeframe, the forecast available resources exceed the planning requirements. However, periods of negative reserve margins are forecast during the fall of 2003 and to a lesser extent in the fall of 2004. The following figure illustrates the weekly resource adequacy situation of the Ontario electricity system for the two resource availability scenarios under normal weather conditions. Reserve margins greater or equal to zero mean adequate resources, while reserve margins less than zero mean resources are below planning target levels.

Weather impact

The potential for extremely hot and humid weather conditions, and extremely cold and windy weather conditions are covered by the Extreme weather scenario.

In order to illustrate the impact of extreme weather on forecast reserve margins during the Outlook period, both the Existing Resource Scenario and the Planned Resource Scenario were re-calculated assuming extreme weather in each week instead of normal weather. The probability of this occurring in every week of the period is extremely small; however, when one looks at an entire summer or winter period, the expectation of at least one occurrence of extreme weather becomes considerably higher.

Under the Planned Resource Scenario with extreme weather, reserve margins could range from about 3,000 MW to -3,000 MW.

The results for extreme weather are shown in the following chart.

Ontario Demand Forecast

The IMO demand forecasting model has been updated to reflect actual economic, demand and weather data through to the end of June 2003. A sluggish U.S. economy and a sequence of unusual domestic events have resulted in a reduced demand forecast. In conjunction with weak actual demand data for the summer of 2003, total energy demand is expected to be 151.2 TWh for 2003. This represents a 0.1% decrease over the weather corrected total for 2002. The forecast annual energy demand for 2004 is 154.9 TWh.

The seasonal peaks of the forecast horizon are contained in the following table. The Expected Peak is based on the Normal weather scenario, but accounts for the higher probability of observing extreme weather sometime during a season compared with the weekly probability embedded in the Normal weather forecast. For a more detailed discussion of demand please see the document titled Ontario Demand Forecast from October 2003 to March 2005 (IMO_REP_0149).

Season	Normal Weather Peak (MW)	Expected Seasonal Peak (MW)	Extreme Weather Peak (MW)
Winter 2004	24,054	25,317	26,023
Summer 2004	23,835	25,995	26,469
Winter 2005	24,181	25,369	26,150

Transmission Outlook

The Outlook related to transmission continues to be similar to previous Outlooks. The transmission system is expected to be adequate to supply demand under the forecast conditions studied in this Outlook. Market participants should recognize that Lakeview, Pickering and Darlington units are required to provide reactive capability to maintain adequate voltage levels, especially during summer peak demand periods.

Some transmission outages will be difficult to schedule without reliability impacts or may be recalled on short notice.

- End of Section -

Caution and Disclaimer

The contents of these materials are for discussion and information purposes and are provided "as is" without representation or warranty of any kind, including without limitation, accuracy, completeness or fitness for any particular purpose. The Independent Electricity Market Operator (IMO) assumes no responsibility to you or any third party for the consequences of any errors or omissions. The IMO may revise these materials at any time in its sole discretion without notice to you. Although every effort will be made by the IMO to update these materials to incorporate any such revisions it is up to you to ensure you are using the most recent version.

This page intentionally left blank.

Table of Contents

Execu	itive Summary	i
1.0	Introduction	1
Upda	tes from Previous Outlook	2
2.0	Resources	5
2.1	Existing Generation Resources Included in the Study	5
2.2	External Transactions	5
2.3	Potential Generation Resource Additions	6
2.4	Summary of Generation Resource Scenarios	6
2.5	Energy Production Capability Forecast	8
3.0	Resource Adequacy Assessment	9
3.1	Weekly Adequacy Assessment	9
3.2	Loss of Load Expectation	13
3.3	Resource Adequacy Risks	14
3.4	External Resources	16
3.5	Energy Conservation and Peak Reduction through Price-Responsive Demands	17
4.0	Transmission Reliability Assessment	19
4.1	Transmission Projects	19
4.2	Planned Transmission Outages	19
4.3	System Voltage, Thermal Limits and Supply Reliability	21
4.4	Forced Outages	22
5.0	Overall Observations, Findings and Conclusions	23
Apper	ndix A Resource Adequacy Assessment Details	27
Apper	ndix B Transmission Projects	39
Apper	ndix C Planned Transmission Outages	41

List of Tables

Table 2.1	Existing Installed Generation Resources	. 5
Table 2.2	Potential Generation Resource Additions in Ontario	. 6
Table 2.3	Summary of Available Resources	. 7
Table A1	Assessment of Resource Adequacy: Existing Resource Scenario	27
Table A2	Assessment of Resource Adequacy: Planned Resource Scenario	29
Table A3	Demand Forecast Range For Required Resources Calculation	31
Table A4	Assessment of Resource Adequacy: <u>Extreme Weather</u> , Existing Resource Scenario	33
Table A5	Assessment of Resource Adequacy: Extreme Weather, Planned Resource Scenario	35
Table A6	Energy Production Capability Forecast	37
Table C1	Bruce Zone	41
Table C2	East Zone	41
Table C3	Essa Zone (continued)	42
Table C4	Niagara Zone	42
Table C5	Northeast Zone	42
Table C6	Northwest Zone	42
Table C7	Ottawa Zone	42
Table C8	Southwest Zone	43
Table C9	Toronto Zone	43
Table C10) West Zone	43

List of Figures

Figure 3.1 Demand Forecast Range	. 9
Figure 3.2 Total Reductions in Resources	10
Figure 3.3 Available vs. Required Resources: Existing Resource Scenario	10
Figure 3.4 Available vs. Required Resources: Planned Resource Scenario	11
Figure 3.5 Reserve Margins: Existing Resource Scenario and Planned Resource Scenario	11
Figure 3.6 Reserve Margin: Existing Resource Scenario vs. Previous Existing Resource	
Scenario	12
Figure 3.7 Reserve Margin: Planned Resource Scenario vs. Previous Planned Resource	
Scenario	13
Figure 3.8 Available vs. Required Resources: Existing Resource Scenario Extreme Weather	
Demand	14
Figure 3.9 Available vs. Required Resources: Planned Resource Scenario Extreme Weather	
Demand	15
Figure 3.10 Reserve Margin: Existing Resource Scenario and Planned Resource Scenario,	
Extreme Weather Demand	15

1.0 Introduction

This Outlook covers the 18-month period from October 1, 2003 to March 31, 2005. It supersedes the report titled "An Assessment of the Reliability of the Ontario Electricity System from July 2003 to December 2004", dated June 24, 2003. Its purpose is to advise market participants of the resource and transmission reliability of the Ontario electricity system, and to assess potentially adverse conditions that might be avoided through adjustment or coordination of maintenance plans for generation and transmission equipment.

Section 2 identifies the resources expected to be available during the study period and Section 3 presents an assessment of the adequacy of these resources under the current generation outage program. An assessment of the reliability of the transmission system is presented in Section 4. Overall observations, findings and conclusions are contained in Section 5.

This Outlook presents an assessment of resource and transmission adequacy based on the stated assumptions, and using the described methodology. Readers may envision other possible scenarios, recognizing the uncertainties associated with various input assumptions, and are encouraged to use their own judgement in considering possible future scenarios. This Outlook provides a base upon which updates in assumptions can be considered. The tables contained in the document can be downloaded from the IMO web site in MS Excel format.

In addition to the comprehensive Outlook, the IMO publishes Interim Updates to the 18-Month Outlook during each month for which a full Outlook is not issued. These updates consist of a spreadsheet which reflects changes to Total Resources, Total Reductions to Resources, and Reserve Margins for the Planned Resource Scenario. Similar to the full Outlooks, the Interim Updates are posted on the IMO web. These updates provide Outlook information on a more frequent basis to allow market participants to better adjust their operational plans and outage schedules.

The reader should be aware that <u>Security and Adequacy Assessments</u> are published on the IMO web site on a weekly and daily basis that progressively supersede information presented in this report.

The contents of this Outlook document focus on the assessment of resource and transmission adequacy. Other supporting information and forecasts are contained in separate documents. These documents will be updated as required.

The document entitled "Ontario Demand Forecast from October 2003 to March 2005" (IMO_REP_0149) (found on the IMO web site at www.theimo.com/imoweb/pubs/marketReports/18Month_ODF_2003oct.pdf) describes in detail the 18-month forecast of electricity demand for the Ontario Market used in this Outlook. The demand forecast document identifies the assumptions used to determine the forecast and identifies the details regarding peak and energy demand forecasts for the Ontario market and parts thereof. It also contains information regarding variations in demand due to weather, economic growth and calendar day types. Data from the demand forecast document can be downloaded in MS Excel format from the IMO web site.

- The document entitled "Methodology to Perform Long Term Assessments" (IMO_REP_0044) (found on the IMO web site at <u>www.theimo.com/imoweb/pubs/marketReports/Methodology_RTAA_2003oct.pdf</u>) contains information regarding the methodology used to perform the demand forecasts, resource adequacy assessments and transmission reliability assessments in this Outlook.
- The document entitled "Ontario Transmission System" (IMO_REP_0045) (found on the IMO web site at www.theimo.com/imoweb/pubs/marketReports/OntTxSystem_2003oct.pdf) provides specific details on the transmission system, including the major internal transmission interfaces and interconnections with neighbouring jurisdictions.

Readers are invited to provide comments on this Outlook report or to give suggestions as to the content of future reports. To do so, please contact the IMO Help Centre:

- Toll Free: 1-888-448-7777
- Tel: 905-403-6900
- Fax: 905-403-6921
- E-mail: helpcentre@theIMO.com.

Updates from Previous Outlook

Updates to Forecast Demands

This forecast of demand has been produced using an updated economic forecast, while the forecasting model itself has been re-estimated based on the most recently observed demand, weather and economic data. The forecasting methodology remains the same as that used in the previous forecast.

A sluggish U.S. economy, lower domestic consumption and a sequence of unusual events have resulted in a lower demand forecast.

Weak energy demand throughout the summer, combined with the updated economic outlook have led to a reduction in the forecasted total energy demand for 2003 to 151.2 TWh. Energy demand is forecasted to be 154.9 TWh for 2004, also lower than previously forecasted. Most of the decrease for 2003 is due to lower actual demand values over the summer. Peak demands are, on average, 125 MW lower than the previous forecast. The peaks are roughly 100 MW lower in January and 200 MW lower in July.

Updates to Resources

Bruce Unit 4 is expected to begin producing power and to be fully dispatchable in October. Bruce Unit 3 is expected to follow about one month after Unit 4. Pickering Unit 4 began producing power on August 21 as part of the commissioning process, and Ontario Power Generation (OPG) advises it will be fully available in September.

There have been substantial updates to the generator outages submitted by market participants.

Updates to Transmission Outlook

The return to service date for circuit B3N has been updated from July 11, 2003 to December 31, 2003, and the return to service date for the phase angle regulator on B3N has been updated from August 31, 2003 to December 31, 2003.

The list of transmission projects and planned and forced transmission outages has been updated from the previous 18-Month Outlook.

- End of Section -

This page intentionally left blank.

2.0 Resources

This section describes the generation resources that were considered in this Outlook based on information available to the IMO.

2.1 Existing Generation Resources Included in the Study

The existing installed generating capacity within Ontario is summarized in Table 2.1. This includes nuclear, coal, oil, gas, hydroelectric, wood and waste-fuelled generation, and results in a total capacity of 30,494 MW.

The capacity of installed generation resources in Table 2.1 does not include Bruce A nuclear units, which are currently being prepared for reactivation. Bruce Unit 4 is expected to begin producing power and to be fully dispatchable in October. Bruce Unit 3 is expected to follow about one month after Unit 4. The Bruce A units, together with other additions to generating capacity identified to the IMO, were progressively added to the installed resources, under the Planned Resource Scenario only, as described in Section 2.4.

The four Pickering A nuclear units were included in the list of existing installed generation resources. Pickering Unit 4 began producing power on August 21 as part of the commissioning process, and Ontario Power Generation (OPG) advises it will be fully available in September. The other three Pickering A units are not expected to be reactivated within the 18-month period covered by this Outlook.

The capacity of the existing installed resources also reflects minor unit re-ratings that occurred prior to the publication of this Outlook, as a result of equipment upgrades.

Fuel Type	Total Capacity (MW)	Number of Stations		
Nuclear	10,836	4		
Coal	7,546	5		
Oil / Gas	4,364	22		
Hydroelectric	7,682	61		
Miscellaneous	66	2		
Total	30,494	94		

Table 2.1 Existing Installed Generation Resources¹

2.2 External Transactions

An ongoing firm purchase of 200 MW was assumed to be delivered to Ontario for the period from the beginning of the Outlook until October 31, 2003; this purchase was explicitly included in the generation resource scenarios described in Section 2.4. No other firm purchase contracts

¹ In Table 2.1, the number of nuclear stations will increase to five with the operation of the first Bruce A unit.

were identified for the study period. There were no firm sales identified at any point in the study period.

2.3 Potential Generation Resource Additions

Table 2.2 summarizes the significant new generation projects in the IMO's Connection Assessment and Approval (CAA) process that are under construction, and are scheduled to be placed in-service within the 18-month study period. Generator owners or operators have provided the information regarding the status of their projects and the in-service/restart dates listed in Table 2.2.

Proponent/Project Name	Zone	Fuel Type	Capacity MW	Connection Applicant's Estimated I/S Date			
Bruce Power Inc Bruce A G4	Bruce	Nuclear	770	October 2003 *			
Bruce Power Inc Bruce A G3	Bruce	Nuclear	770	November 2003 *			
Imperial Oil	West	Gas	98	April 2004			
ATCO - Brighton Beach	West	Gas	578	May 2004			
Total	2,216						

Table 2.2 Potential Generation Resource Additions in Ontario

* estimated restart date

Details regarding the IMO's Connection Assessment and Approval process and the status of all projects in the queue, including copies of available Preliminary Assessment (PA) and System Impact Assessment (SIA) Reports, can be found on the IMO's web site <u>www.theIMO.com</u> under the "Services - Connection Assessments" link.

2.4 Summary of Generation Resource Scenarios

In assessing future resource adequacy, it is necessary to make a number of assumptions regarding the magnitude of generation resources expected to be available for operation. Two resource scenarios were considered in this Outlook: an Existing Resource Scenario and a Planned Resource Scenario. Both resource scenarios were established starting from the existing installed resources shown in Table 2.1.

Temporary generators that were installed in response to the request of the Ontario government were successfully used during the recovery period following the blackout of August 14, 2003. These temporary generators presently provide about 250 MW of capacity from five facilities within the province. This capacity is available to be used during emergency supply conditions. In this Outlook, these temporary generators are not included in the calculation of available reserve and the associated capacity has not been included in either of the two Resource Scenarios presented herein.

Under the **Existing Resource Scenario** Ontario generation resources identified in Table 2.1 were assumed to be in-service with the exception of three of the Pickering A nuclear units, which were assumed to be out-of-service for the duration of the study period. Purchases of 200 MW were assumed available up to the end of October 2003. This resource scenario assumed that none of the additional generation resources listed in Table 2.2 would be placed in service over the study period.

Under the **Planned Resource Scenario** existing Ontario generation resources were assumed to be in-service with the exception of three of the Pickering A units, which were assumed to be out-of-service for the duration of the study period. A firm purchase of 200 MW was assumed available up to the end of October 2003. Additionally, all potential generation additions listed in Table 2.2 were included under this scenario.

Forecasts of available resources were derived for each of the two resource scenarios described above, using information regarding generator output capabilities, planned outages, allowances for hydroelectric generation production below rated capacity, assumptions for the amount of price-responsive demand, and major transmission interface limitations.

Table 2.3 shows a snapshot of the forecast available resources, under the two scenarios, at the time of the seasonal peak demands over the study period. The installed resources in Table 2.3 start with the values listed in Table 2.1 and are incremented, for the Planned Resource Scenario, by the generation resource additions listed in Table 2.2. Imports consist of the purchases that were assumed to be delivered to Ontario as described in Section 2.2. The total reductions to resources include generator deratings, generator planned outages under each resource scenario, capacity limitations due to transmission interface constraints and allowances for hydroelectric generation production below rated capacity. The total reductions were subtracted and the price-responsive demand was added to the total resources, to obtain the available resources. In this Outlook, an amount of 300 MW of price-responsive demand was assumed to be available only under the Planned Resource Scenario, as shown in Table 2.3.

		Winter F	Peak 2004	Summer	Peak 2004	Winter Peak 2005		
Notes	Description \ Year	Existing Resource Scenario	Planned Resource Scenario	Existing Resource Scenario	Planned Resource Scenario	Existing Resource Scenario	Planned Resource Scenario	
1	Installed Resources (MW)	30,494	32,034	30,494	32,710	30,494	32,710	
2	Imports (MW)	0	0	0	0	0	0	
3	Total Resources (MW)	30,494	32,034	30,494	32,710	30,494	32,710	
4	Total Reductions in Resources (MW)	3,420	3,446	3,573	4,418	2,744	3,565	
5	Price-responsive Demand (MW)	0	300	0	300	0	300	
6	Available Resources (MW)	27,074	28,888	26,921	28,592	27,750	29,445	

Table 2.3 Summary of Available Resources

Notes to Table 2.3:

- 1. Installed Resources (MW): This is the total capacity of the generation resources in Ontario assumed to be installed at the time of the summer and winter peaks in the 18-month time span. Initially, this value includes all generators registered to participate in the IMO-administered markets at the beginning of the 18-month period, except for Bruce A nuclear units. It also reflects minor unit re-ratings that occurred prior to the publication of this Outlook, as a result of equipment upgrades. Additional generation capacity that was assumed under the applicable resource scenario is progressively included, according to the estimated in-service dates.
- 2. Imports (MW): Represents the amount of external capacity considered to be delivered to Ontario.
- 3. Total Resources (MW): This is the sum of Installed Resources (line 1) and Imports (line 2).
- 4. Total Reductions in Resources (MW): These reductions represent, under each of the two scenarios, the sum of generator deratings, generator planned outages under each resource scenario, generation

limitations due to transmission interface constraints and allowances for hydroelectric generation production below rated capacity.

- 5. Price-responsive Demand: This is the amount of price-responsive demand assumed under each resource scenario.
- 6. Available Resources (MW): This equals Total Resources (line 3) minus Total Reductions in Resources (line 4) plus Price-responsive Demand (line 5).

2.5 Energy Production Capability Forecast

The monthly forecast of energy production capability, as provided by market participants, is included in Appendix A, Table A6.

- End of Section -

3.0 Resource Adequacy Assessment

This section provides an assessment of the adequacy of the resources described in Section 2 to meet the forecast demand. The purpose of the two resource scenarios described in Section 2.4 is to present a range of possible outcomes, in recognition of the uncertainty which exists regarding the future availability of resources. The Existing Resource Scenario, which assumes no generation resource additions and no price-responsive demand, represents the lower boundary of the range, considering the potential for delays to the in-service dates of additional generation capacity. The Planned Resource Scenario, which assumes 300 MW of price-responsive demand and capacity additions based on project status and in-service date estimates, represents the higher boundary of the outcome range.

As mentioned in Section 1, the methodology used to carry out this assessment is described in detail in the document titled "Methodology to Perform Long Term Assessments" (IMO_REP_0044). Results of the adequacy assessment, as well as an analysis of risk factors, are described in Sections 3.1 through 3.5. Observations, findings and conclusions are provided in Section 5, and detailed tables of results can be found in Appendix A of this document.

3.1 Weekly Adequacy Assessment

The assessment of weekly adequacy takes into consideration a range of forecast demands based on a probability distribution of historical weather data. Margins have been calculated assuming both normal weather (with an allowance for the probability of experiencing extreme weather) and assuming extreme weather (with no further allowance for weather uncertainty). Figure 3.1 shows the normal and extreme weather demands assumed for each week in the study period.

Figure 3.1 Demand Forecast Range

Figure 3.2 shows the Total Reductions in Resources used in the calculation of the Available Resources (as described in Section 2.4).

Figure 3.2 Total Reductions in Resources

Figure 3.3 provides a comparison between Available Resources, and Required Resources for each week, for the Existing Resource Scenario. The latter quantity is based on a probabilistic calculation, which takes into account load forecast uncertainty due to weather and random generator forced outages. Figure 3.4 provides a similar comparison for the Planned Resource Scenario.

Figure 3.3 Available vs. Required Resources: Existing Resource Scenario

Figure 3.4 Available vs. Required Resources: Planned Resource Scenario

Reserve Margins, which represent the difference between Available Resources and Required Resources, are shown in Figure 3.5 for each resource scenario studied.

Figure 3.5 Reserve Margins: Existing Resource Scenario and Planned Resource Scenario

Under the **Existing Resource Scenario**, Pickering Unit 4 is now included, and this represents a significant change from the previous Outlook. Under this scenario, reserve margins have improved from the previous Outlook and are positive for more weeks during the study period. The resource shortfalls which remain are greatest during the remaining months of 2003, and in the summer and fall of 2004 under peak demand conditions. Resource reductions due to a large maintenance outage during October 2003 together with the assumption that only existing resources are available in this scenario contribute to negative reserve margins during the fall of 2003. Other generator outages that have been planned to occur after October contribute to negative reserve margins in November and December of 2003. Resource reductions due to a large maintenance outage during the fall of 2004 contribute to negative reserve margins during that time period. Negative reserve margins throughout most weeks of the Outlook period indicate that forecast resource levels are below planning requirements. As such, planned generator outages during negative margin weeks are at risk of cancellation by the IMO for reliability purposes

depending on their priority and the resource adequacy situation at the time their approval is being sought. Given the large number of weeks with negative margins in this scenario, to the extent this scenario materializes, opportunities for additional planned generator maintenance would be limited and in most weeks imports would be necessary.

The above results must be assessed considering the risk factors described in Section 3.3. During most of the study period, a combination of high demand levels under extreme weather conditions and lower than forecast levels of available resources could lead to significant reliance on imports and upward pressure on the wholesale market prices. During the summer of 2002, under such conditions, import levels approached, and occasionally reached, the Ontario coincident import capability of approximately 4,000 MW.

Under the **Planned Resource Scenario**, the resource adequacy situation is significantly improved when compared to the Existing Resource Scenario. For most of the Outlook timeframe, the forecast available resources exceed the planning requirements. However, periods of negative reserve margins are forecast during the fall of 2003 and to a lesser extent in the fall of 2004. To the extent this scenario materializes, opportunities exist for additional planned generator maintenance and exports. Again, the risk factors described in Section 3.3 must be considered.

Figures 3.6 and 3.7 provide a comparison between the forecast reserve margins in the present Outlook and the forecast reserve margins in the previous Outlook published on June 24, 2003. Under the Existing Resource Scenario, the return to service of Pickering Unit 4 yields a slightly higher supply availability outlook when compared to the previous 18-Month Outlook. Under the Planned Resource Scenario, forecast reserve margins are generally lower in this Outlook than the previous one, due mainly to updates in the generator outage program.

Figure 3.6 Reserve Margin: Existing Resource Scenario vs. Previous Existing Resource Scenario

The IMO will closely monitor the resource situation and implement available control actions, if required, in accordance with the Market Rules. Tight demand/supply balances during periods of negative reserve margins will have several potential market impacts. These include upward pressure on the wholesale market prices and limited opportunities for the IMO to approve the release of generators for planned maintenance. Various responses can be anticipated and would be relied upon in these circumstances, including: for Ontario generators, maximizing their availability to offer into the Ontario market; for marketers, arranging imports to help meet anticipated Ontario requirements; and for large consumers, taking measures to reduce their electricity consumption.

3.2 Loss of Load Expectation

A number of simulations were performed to calculate the Loss of Load Expectation (LOLE) during the study period. The simulations started from the two resource scenarios described in Section 2.4 and used the methodology described in Section 2.3 of the document "Methodology to Perform Long Term Assessments" (IMO_REP_0044). The calculations were performed in two steps. In the first step, the resource availability was established based on the same levels that were used in the calculations described in Section 3.1. In the second step, additional resources were made available to Ontario, with the purpose of reducing the LOLE value to the target level. The target LOLE value is equivalent to an annual LOLE of 0.1 days/year. The modeling of additional resources was carried out in accordance with the NPCC resource adequacy criterion, which allows for supplemental capacity in the form of interconnection assistance, outage rescheduling and implementation of emergency operating procedures.

Simulation results indicate that, in order to achieve the target LOLE, additional resources would be required, approximately to the level necessary to offset the margin deficiencies under each of the two resource scenarios, shown in Tables A1 and A2 in Appendix A.

3.3 Resource Adequacy Risks

The forecast reserve margins for both the Existing Resource Scenario and the Planned Resource Scenario should be assessed bearing in mind the risks discussed below. Each of these risks, whether considered alone or in combination with the others, could result in lower than forecast reserve margins and the need for high levels of imports or curtailment of planned outages.

3.3.1 Extreme Weather

The Existing Resource Scenario and the Planned Resource Scenario are based on the assumption of normal (average) weather. However, peak demands in both summer and winter typically occur during periods of extreme weather. Unfortunately, the occurrence and timing of extreme weather is impossible to accurately forecast far in advance. As a result, the impact of extreme weather is accounted for probabilistically in the calculation of the required resources for each week of the study period. The impact of extreme weather was demonstrated in August 2002, when Ontario established an all-time peak demand of 25,414 MW. Approximately 1,700 MW of this demand was due to the higher than average heat and humidity.

In order to illustrate the impact of extreme weather on forecast reserve margins during the Outlook period, both the Existing Resource Scenario and the Planned Resource Scenario were re-calculated assuming extreme weather in each week instead of normal weather. The probability of this occurring in every week is infinitesimally small; however the probability of an occurrence in any given week is greater (about 2.5 percent). When one looks at the summer or winter periods, the expectation of at least one occurrence of extreme weather becomes considerably higher. Results for extreme weather are shown in Figures 3.8, 3.9, and 3.10.

The magnitude of resource deficiencies, under extreme weather, clearly illustrates there are circumstances under which reliance on interconnected supply would approach and possibly reach the limits of the transmission system. Because imports cannot provide supply much above 4,000 MW, even under ideal conditions, the need for other participant impactive actions, such as outage rescheduling, emphasizes the need for new supply and demand responses within Ontario.

Figure 3.8 Available vs. Required Resources: Existing Resource Scenario <u>Extreme Weather Demand</u>

Figure 3.10 Reserve Margin: Existing Resource Scenario and Planned Resource Scenario, <u>Extreme Weather Demand</u>

3.3.2 Generator Return to Service Delays

The return to service of Pickering Unit 4 is a significant development. However, more new generating capacity is needed, as well as price-responsive demand. The improved demand-supply situation for the Planned Resource Scenario is critically dependent on the returning nuclear units and new generation projects coming to service on schedule. The risks associated with the return-to-service dates of units from long-term lay-up and planned outages were identified in the previous quarterly Outlook, and the IMO considers that some risk persists with the updated information. This risk is greatly diminished and reduces progressively as return-to-service milestones are met.

3.3.3 Extensions to Generator Planned Outages

A number of large generating units are scheduled to return to service from outage at the beginning of winter 2003/04, with numerous others scheduled to return from future planned

outages prior to summer 2004. Meeting these schedules is critical to maintaining positive reserve margins. Delays in commissioning new units or returning generators to service, whether from lay-up or maintenance outages, could once again lead to extensive reliance on imports as has been the case during the summer of 2002.

3.3.4 Higher than Forecast Generator Unavailability

IMO resource adequacy assessments include a probabilistic allowance for random generator forced outages based on generator reliability information provided by market participants, or on industry-wide data for similar facilities. Along with weather-related demand impacts, the impact of generator forced outages is included in the determination of required resources.

It should be noted that the lack of flexibility in scheduling maintenance outages, which could happen under the Existing Resource Scenario, would have a negative impact on the long-term reliability of the generating units, hence it could increase the number of forced outage occurrences. If the actual amount of generator forced outages is higher than the calculated allowance, reserve margins could be lower than the forecast values.

3.3.5 Lower than Forecast Hydroelectric Resources

IMO resource adequacy assessments include forecast amounts of hydroelectric generation provided by market participants. The amount of available hydroelectric generation is greatly influenced both by water-flow conditions on the respective river systems and the way in which water is utilized.

Water-flow conditions are primarily influenced by the amount of precipitation received. To accurately forecast precipitation amounts so far in advance is impossible. Drought conditions over some or all of the study period would lower the amount of generation available from hydroelectric resources.

Experience over the summer of 2002 has also shown that even when sufficient capacity is available, its use can be limited because of a lack of energy due to scheduling decisions. An example of this occurs when peaking hydroelectric generation is operated extensively during the early portion of a week in response to market signals and, as a result, there is insufficient water available in storage reservoirs to support required levels of operation later in the week.

3.4 External Resources

An analysis of historical power flows on Ontario's interconnections for the five years prior to 2002 shows that outside of summer peak demand periods up to 1,800 MW of external generation resources might be expected to be available to Ontario. During Ontario's summer peak demand periods of July and August opportunities for imports still exist and imports are still expected to be available despite the fact that many neighbouring systems are often experiencing their peak demand. This is mainly due to the non-coincidence of the daily peak hours between Ontario and its neighbours and the availability of spare capacity from systems that are not summer peaking. From the same analysis, up to 1,400 MW would be expected to be available based on observations during summer peak months in recent years prior to 2002.

The actual hourly import levels experienced from market opening in May 2002 up to August 31, 2003 indicates an average import level of 1,120 MW for all hours. During the 2,171 hours when Ontario demand exceeded 20,000 MW the average import level was 1,579 MW. During the 265 hours when Ontario demand exceeded 23,000 MW the average import level was 2,436 MW, and occasionally reached the Ontario coincident import capability of approximately 4,000 MW.

Future levels of imports into Ontario will vary depending on several factors, including the availability and willingness of resources in external jurisdictions to supply the Ontario market, and the availability of required transmission capacity.

3.5 Energy Conservation and Peak Reduction through Price-Responsive Demands

A viable and less expensive alternative to building new generation capacity in Ontario is the development of price-responsive demands. Price-responsive demands would improve the supply-demand outlook in two main ways:

- Energy conservation through reduction of the electricity consumption would have beneficial effects on the environment, as well as on the enduring reliability of the existing generating units through lower utilization rates.
- Changing consumption patterns by shifting some of the consumption from peak to off-peak periods would reduce the peak demand with downward effects on electricity prices.

Both types of behaviour would offset, or at least significantly delay, the need for additional generation capacity in Ontario.

Following the blackout of August 14, 2003, Ontario electricity consumers made important contributions in helping to maintain the supply-demand balance. Although power was restored to almost all customers by the end of the day following the blackout, supplies continued to be constrained for a further week. During the recovery period, prior to all generating units returning to service, appeals for conservation led to demand reductions of up to 4,500 MW, which meant lower energy consumption as well as lower peak demand values.

- End of Section -

This page intentionally left blank.

4.0 Transmission Reliability Assessment

This section provides an assessment of the reliability of the Ontario transmission system.

4.1 Transmission Projects

Committed transmission projects, summarized in Appendix B by transmission zone, represent a subset of the transmission projects in the CAA queue. Only those projects that have an estimated in-service date within the 18-month period under study are listed.

By April 30, 2004, it is expected that a new 845 MVA phase angle regulator (PAR) for 230 kV circuit L4D will be placed in-service. With the placing in-service of this PAR, all tie lines associated with the Ontario – Michigan interconnection will have phase shifting capability. Full phase shifting control of the interconnection can be utilized when the B3N, L4D and L51D PARs are not operated at their neutral tap.

4.2 Planned Transmission Outages

The principal purpose of the transmission reliability assessment is to forecast any reduction in transmission capacity brought about by specific transmission outages. For a major transmission interface or interconnection, the reduction in transmission capacity due to an outage condition can be expressed as a change in the base flow limit associated with the interface or interconnection. Another purpose of the transmission reliability assessment is to identify the possibility of any security-related events on the IMO controlled grid that could require contingency planning by market participants or by the IMO. As a result, the transmission outages are reviewed to identify transmission system reliability concerns and to highlight those outages that should be rescheduled or changed. As an example, a change in an outage may include reducing the scheduled duration or recall time.

The assessment of transmission outages will also identify any resources that are constrained off due to transmission outage conditions. Transmitters and generators are expected to have a mutual interest in developing an ongoing arrangement to coordinate their outage planning activities. Transmission outages that may affect generation access to the IMO-controlled grid should be coordinated with the generator operators involved, especially at times when forecast reserve margins are negative. Under the Market Rules, where the scheduling of planned outages by different market participants conflicts such that both or all outages cannot be approved by the IMO, the IMO will inform the affected market participants and request that they resolve the conflict. If the conflict remains unresolved, the IMO shall determine which of the planned outages can be approved according to the priority of each planned outage as determined by the Market Rules detailed in Chapter 5, Sections 6.4.13 to 6.4.18.

For this Outlook, transmission outage plans as of the beginning of August 2003 were used.

The IMO's assessment of the impact of the transmission outage plans is shown in Appendix C, Tables C1 to C10. In these tables, each element is assessed individually by indicating the possible impacts and the reduction in transmission interface and/or interconnection limits. The

methodology used to assess the transmission outage plans is described in the IMO document titled "Methodology to Perform Long Term Assessments" (IMO REP 0044).

Generally, only a few of the planned outages will potentially impact transmission system reliability and available resources. The outages with the highest potential impact are listed below:

East Zone

The IMO is concerned with the November 3, 2003 and November 4, 2003 to November 9, 2003 outages for the Chenaux Project involving the addition of two new 230 kV breakers and the reconnection of transformer T4. These two outages may limit the amount of 115 kV load that can be supported in the Renfrew area. The amount of load that can be supported during these two outages will vary from approximately 55 MW to 115 MW depending on the Chenaux Project outage conditions and the available hydroelectric generation from Chenaux and Quebec. It is estimated the Renfrew area demand could vary from a peak of approximately 110 MW to an off peak value of approximately of 75 MW. In addition, the Renfrew area supply/demand balance required for the duration of these outages may not be met due to energy limitations typically associated with hydroelectric supply. In the approval timeframe of these outages, the IMO may delay or cancel the outages if the hydroelectric production capability is not expected to be sufficient to meet the demand. The IMO also suggests that the transmitter review the November 4, 2003 to November 9, 2003 outage to see if the duration of the outage can be shortened.

As detailed in Table C2, Appendix C, Chenaux generation is constrained off for four of the five Chenaux Project outages.

West Zone

As detailed in the last two 18-Month Outlooks, outages at the Scott Transformer Station were required to allow the transmitter to upgrade station facilities that would remove a 25 kA fault level restriction at the station. Most of the scheduled outages also required the removal from service of additional equipment to respect the fault level restriction. The last outage – the AL25 breaker – associated with this work is forecast to be completed by mid-October 2003. This outage does not require any additional equipment removed from service to respect the fault level restriction.

The assessment of transmission outages for this Outlook has been limited to those outages with a scheduled duration of greater than five days or to those outages associated with a project where at least one outage has a scheduled duration of greater than five days. The IMO recognizes that there are expected to be additional outage requirements and/or changes as time approaches the Outlook study period and that transmission capacity will be impacted by outages with a scheduled duration of five days or less. Prior to approving and releasing an outage, the IMO will reassess the outage for potential system impacts, taking into account all current and forecasted conditions.

4.3 System Voltage, Thermal Limits and Supply Reliability

As in previous Outlooks, low system voltage concerns in certain sub-areas of the province may limit some generation and transmission outages from being planned during summer peak demand periods. The various system voltage concerns are described below.

In the Windsor area, load growth will continue to stress the capability of the existing system under extreme-weather, summer peak conditions, such that voltages are expected to be near the low end of the acceptable range even with most static reactive sources in-service. In addition, maintaining acceptable voltage levels may require restrictions on the use of the J5D interconnection with Michigan for exports, particularly during summer peak periods. Planned outages to generating units and/or transmission circuits during peak load conditions with coincident purchases from Michigan will require special control actions to prevent post-contingency thermal overloading of transmission facilities. The special control actions could include the splitting of the Windsor 115 kV local area and arming of the Kingsville under-voltage load rejection scheme. Splitting the Windsor area will result in some Windsor 115 kV loads being served by a single supply. Avoiding planned outages in this area during peak load conditions is desired. The addition of the ATCO – Brighton Beach generation project by 2004-Q2 will improve the voltage profile in this area.

When peak demands exceeded 25,000 MW in August 2001 and July, August, and September 2002, pre-contingency voltage levels in the Toronto zone were acceptable but with little margin for contingencies. The reactive requirement to maintain voltage levels at or above the minimum required levels was very high. Most static reactive resources and transmission elements were required in-service and the Lakeview, Pickering and Darlington units had to supply higher than normal amounts of reactive power. The high demand for reactive power left significantly lower than normal reactive margin for contingencies. The performance of these units in providing reactive power to maintain acceptable voltage levels in the Toronto zone during summer peak periods is extremely important. Planned outages and restrictions on the use of the reactive capability of the Lakeview, Pickering and Darlington units should be avoided during summer peak periods. The recent addition of a 125 MVAr, 115 kV capacitor at the Hearn Switching Station and the planned addition of a 125 MVAr, 115 kV capacitor at the Leaside Transformer Station by 2004-Q2 will improve the voltage profile in this area under summer peak conditions.

High transmission facility loadings were also observed during the August 2001 and July and August 2002 hot weather conditions. With some local generating facilities operating at less than full output, the 500/230 kV autotransformers located at the Cherrywood Transmission Station in the Toronto zone were operated at power levels near, but below their continuous thermal limits or ratings. The reactivation of the first Pickering A unit will help alleviate loading levels on the Cherrywood autotransformers because the unit will be connected to the IMO-controlled grid via the 230 kV transmission network.

Under 2002 summer peak conditions, loadings on the 230/115 kV Burlington autotransformers in the Southwest zone were also high. For a contingency involving the loss of one autotransformer, the post-contingency loading on the remaining three autotransformers would have been at levels near the 10-Day Limited Time Ratings. The planned addition by the transmitter of 125 MVAr, 115 kV capacitor bank at Burlington TS by the second quarter of 2004 will help alleviate this concern and provide additional voltage support in the area.

In the Northwest zone at least one of the two generators, in combination with the condenser, at Thunder Bay is required to be in-service, most of the time at peak load, to maintain minimum voltages in the area. Coincident planned generator outages are a concern since the condenser, in service by itself, may not be able to maintain minimum voltage requirements. In addition, on loss of the condenser, the Thunder Bay G2 unit is required in service in order to restore the condenser to service. Avoiding planned generator outages during peak load conditions may be required to alleviate this concern. The expected installation of an 80 MVAr shunt capacitor at Birch Transformer Station by 2003-Q4 will result in an improvement of the 115 kV voltage profile in the area and increased reliability in the local peak load supply.

There are also requirements for specific generating unit availability and specific transmission availability in the Toronto zone in order to maintain supply reliability of the Toronto zone during other time periods, in particular as a result of significant planned outages to generating stations close to Toronto. In these situations, transmission capacity on the Flow East Towards Toronto (FETT) interface needs to be maintained as high as possible. Planned outages on the transmission facilities affecting the FETT interface should be avoided. The IMO has identified the exact periods of concern and provided specific requirements to affected transmitters and generators separate from this Outlook.

4.4 Forced Outages

Due to a forced outage, 230 kV circuit B3N (Scott Transformer Station x Bunce Creek, Michigan) is unavailable until December 31, 2003. This outage increases the upper limit of the Ontario – Michigan import capability by 200 MW in the summer and by 300 MW in the winter. The Ontario – Michigan export capability decreases by approximately 500 MW in the summer and in the winter. The 230 kV B3N phase angle regulator (PAR) in Michigan is also unavailable until December 31, 2003.

The 230 kV L51D phase angle regulator (PAR) is unavailable until October 31, 2003 but does not affect the import and export capability of the Ontario – Michigan interconnection.

- End of Section -

5.0 Overall Observations, Findings and Conclusions

The following findings and conclusions are based on the results of the assessment carried out for this Outlook.

Resource Adequacy

- Under the **Existing Resource Scenario**, Pickering Unit 4 is now included, and this represents a significant change from the previous Outlook. Under this scenario, reserve margins have improved from the previous Outlook and are positive for more weeks during the study period. The resource shortfalls which remain are greatest during the remaining months of 2003, and in the summer and fall of 2004 under peak demand conditions. Resource reductions due to a large maintenance outage during October 2003 together with the assumption that only existing resources are available in this scenario contribute to negative reserve margins during the fall of 2003. Other generator outages that have been planned to occur after October contribute to negative reserve margins in November and December of 2003. Resource reductions due to a large maintenance outage during the fall of 2004 contribute to negative reserve margins in November and December of 2003. Resource reductions due to a large maintenance outage during the fall of 2004 contribute to negative reserve margins during that time period.
- Under the **Planned Resource Scenario**, the resource adequacy situation is significantly improved when compared to the Existing Resource Scenario. For most of the Outlook timeframe, the forecast available resources exceed the planning requirements. However, periods of negative reserve margins are forecast during the fall of 2003 and to a lesser extent in the fall of 2004. To the extent this scenario materializes, opportunities exist for additional planned generator maintenance and exports.
- Results of the resource adequacy assessment are summarized in the matrix below. The different shadings are intended to suggest the degree of concern regarding the supply/demand situation under each resource-weather scenario combination.

	Normal Weather	Extreme Weather
Existing Resources	 many planned outages at risk imports required for much of the study period 	 most planned outages at risk imports maximized during peak periods risk of insufficient supply
Planned Resources	 periods with opportunities for additional outages/exports some periods where imports may be required 	 many planned outages at risk imports required during peak periods

• Tight demand/supply balances during periods of negative reserve margins will have several potential market impacts. These include upward pressure on wholesale market prices during peak demand periods and limited opportunities for the IMO to approve the release of generators for planned maintenance. Various responses can be anticipated in these circumstances, including: for Ontario generators, maximizing their availability to offer into

the Ontario market; for marketers, arranging imports to help meet anticipated Ontario requirements; and for large consumers, taking measures to reduce their electricity consumption.

- The magnitude of resource deficiencies under extreme weather, clearly illustrates there are circumstances under which reliance on interconnected supply would be stretched to the limits of the transmission system in the Existing Resource Scenario. The risk of even short-duration inability to meet demand during such conditions emphasizes the need for additional supply and price-responsive demand within Ontario.
- The return to service of Pickering Unit 4 is a significant development. However, more new generating capacity is needed, as well as price-responsive demand. An improved demand-supply situation is critically dependent on the remaining nuclear units and new generation projects coming to service on schedule. The risks associated with the return-to-service dates of units from long-term lay-up and planned outages were identified in the previous quarterly Outlook, and the IMO considers that some risk persists with the updated information. This risk is greatly diminished and reduces progressively as return-to-service milestones are met.
- The importance of demand reductions was demonstrated during the period following the blackout on August 14, 2003, when conservation appeals led to demand reductions of up to 4,500 MW.
- A number of large generating units are scheduled to return to service from outage at the beginning of winter 2003/04, with numerous others scheduled to return from planned outages prior to summer 2004. Meeting these schedules is critical to maintaining positive reserve margins.
- High generator unavailability, whether caused by higher forced outage rates, delays in commissioning new units or returning generators to service, could once again lead to extensive reliance on imports as was the case during 2002. Under these circumstances, opportunities for planned outages, especially during the summer period, would be very limited.
- Lower than forecast amounts of hydroelectric resources, due to drought conditions over some or all of the study period, or due to scheduling decisions, would reduce the available resource levels and increase the risk of energy shortages.
- Over the 18-month period under study, accounting for the availability of imported regional supply, the Northeast Power Coordinating Council resource adequacy criterion is expected to be met.

Transmission Adequacy

- In the East zone, the Chenaux project outages may reduce supply reliability to the Renfrew area. These outages will be reassessed by the IMO during the approval timeframe.
- Avoiding planned outages and maximizing the reactive capability of the Lakeview, Pickering and Darlington units is required to maintain voltage levels above the minimum required levels in the Toronto zone during summer peak conditions.

- Avoiding planned transmission outages affecting the Flow East Towards Toronto (FETT) interface during significant planned outages to generating stations close to Toronto in the fall of 2003 will be required to maintain supply reliability to the Toronto zone.
- Restricting planned outages to transmission facilities in the Windsor area will assist in maintaining adequate voltage levels during summer peak periods
- Rotating reactive resources in the Thunder Bay area will continue to be required to address local voltage concerns.

- End of Section -

This page intentionally left blank.

Appendix A Resource Adequacy Assessment Details

		Total	Price-							
Week	Total	Reductions	Responsive	Available	Required	Available	Available	Required	Required	Reserve
Ending	Resources	in Resources	Demand	Resources	Resources	Reserve	Reserve	Reserve	Reserve	Margin
Day	MW	MW	MW	MW	MW	%	MW	%	MW	MŴ
05-Oct-03	30,694	7,223	0	23,471	21,986	22.6	4,321	14.8	2,836	1,485
12-Oct-03	30,694	9,691	0	21,003	22,322	7.9	1,530	14.6	2,849	-1,319
19-Oct-03	30,694	9,189	0	21,505	22,708	8.5	1, 6 85	14.6	2,888	-1,203
26-Oct-03	30,694	9,180	0	21,514	23,081	6. 8	1,367	14.6	2,934	-1,567
02-Nov-03	30,694	9,003	0	21,691	23,550	5.4	1,114	14.5	2,973	-1,859
09-Nov-03	30,494	8,242	0	22,252	24,730	3.2	689	14.7	3,167	-2,478
16-Nov-03	30,494	7,535	0	22,959	25,072	4.3	953	13.9	3,066	-2,113
23-Nov-03	30,494	7,492	0	23,002	25,464	2.7	595	13.6	3,057	-2,462
30-Nov-03	30,494	7,413	0	23,081	25,597	2.1	473	13.2	2,989	-2,516
07-Dec-03	30,494	5,562	0	24,932	26,795	6.7	1,567	14.7	3,430	-1,863
14-Dec-03	30,494	5,590	0	24,904	26,757	6.3	1,473	14.2	3,326	-1,853
21-Dec-03	30,494	5,500	0	24,994	27,257	5.2	1,243	14.8	3,506	-2,263
28-Dec-03	30,494	3,773	0	26,721	27,146	12.3	2,934	14.1	3,359	-425
04-Jan-04	30,494	3,763	0	26,731	25,572	21.6	4,743	16.3	3,584	1,159
11-Jan-04	30,494	3,420	0	27,074	27,727	12.6	3,020	15.3	3,673	-653
18-Jan-04	30,494	3,493	0	27,001	27,648	13.1	3,131	15.8	3,778	-647
25-Jan-04	30,494	3,511	0	26,983	27,333	14.3	3,369	15.8	3,719	-350
01-Feb-04	30,494	3,550	0	26,944	27,204	13.4	3,178	14.5	3,438	-260
08-Feb-04	30,494	3,988	0	26,506	26,983	12.6	2,973	14.7	3,450	-477
15-Feb-04	30,494	4,014	0	26,480	26,788	13.6	3,166	14.9	3,474	-308
22-Feb-04	30,494	3,996	0	26,498	26,262	16.1	3,675	15.1	3,439	236
29-Feb-04	30,494	3,996	0	26,498	26,079	16.9	3,833	15.1	3,414	419
07-Mar-04	30,494	4,555	0	25,939	25,799	15.6	3,505	15.0	3,365	140
14-Mar-04	30,494	4,474	0	26,020	25,397	18.0	3,959	15.1	3,336	623
21-Mar-04	30,494	5,033	0	25,461	24,985	17.2	3,739	15.0	3,263	476
28-Mar-04	30,494	5,983	0	24,511	24,307	15.4	3,265	14.4	3,061	204
04-Apr-04	30,494	6,899	0	23,595	23,961	13.3	2,765	15.0	3,131	-366
11-Apr-04	30,494	6,363	0	24,131	22,907	20.9	4,177	14.8	2,953	1,224
18-Apr-04	30,494	7,757	0	22,737	22,613	15.1	2,984	14.5	2,860	124
25-Apr-04	30,494	7,609	0	22,885	22,083	18.3	3,535	14.1	2,733	802
02-May-04	30,494	7,202	0	23,292	21,902	22.6	4,296	15.3	2,906	1,390
09-May-04	30,494	7,311	0	23,183	22,631	23.5	4,405	20.5	3,853	552
16-May-04	30,494	6,986	0	23,508	23,562	23.1	4,418	23.4	4,472	-54
23-May-04	30,494	6,983	0	23,511	23,837	19.5	3,843	21.2	4,169	-326
30-May-04	30,494	5,625	0	24,869	24,410	23.4	4,714	21.1	4,255	459
06-Jun-04	30,494	5,601	0	24,893	25,816	14.0	3,054	18.2	3,977	-923
13-Jun-04	30,494	4,914	0	25,580	26,930	12.8	2,898	18.7	4,248	-1,350
20-Jun-04	30,494	4,812	0	25,682	27,051	11.4	2,628	17.3	3,997	-1,369
27-Jun-04	30,494	4,004	0	26,490	27,316	15.1	3,483	18.7	4,309	-826

Table A1Assessment of Resource Adequacy:Existing Resource Scenario

Note: The reader should be aware that <u>Security and Adequacy Assessments</u> are published on the IMO web site on a weekly and daily basis that progressively supersede information presented in this report.

		Total	Price-							
Week	Total	Reductions	Responsive	Available	Required	Available	Available	Required	Required	Reserve
Ending	Resources	in Resources	Demand	Resources	Resources	Reserve	Reserve	Reserve	Reserve	Margin
Day	MW	MW	MW	MW	MW	%	MW	%	MW	MŴ
04-Jul-04	30,494	3,384	0	27,110	27,979	14.4	3,408	18.0	4,277	-869
11-Jul-04	30,494	3,573	0	26,921	27,834	13.0	3,086	16. 8	3,999	-913
18-Jul-04	30,494	3,541	0	26,953	27,656	13.3	3,164	16.3	3,867	-703
25-Jul-04	30,494	3,537	0	26,957	27,668	13.3	3,169	16.3	3,880	-711
01-Aug-04	30,494	3,530	0	26,964	27,430	15.0	3,511	17.0	3,977	-466
08-Aug-04	30,494	3,535	0	26,959	27,619	14.4	3,384	17.2	4,044	-660
15-Aug-04	30,494	3,568	0	26,926	27,432	14.4	3,381	16.5	3,887	-506
22-Aug-04	30,494	3,533	0	26,961	27,347	15.8	3,676	17.4	4,062	-386
29-Aug-04	30,494	3,471	0	27,023	27,602	15.3	3,589	17.8	4,168	-579
05-Sep-04	30,494	5,213	0	25,281	26,706	13.9	3,092	20.4	4,517	-1,425
12-Sep-04	30,494	6,123	0	24,371	24,835	14.7	3,117	16.9	3,581	-464
19-Sep-04	30,494	6,120	0	24,374	24,473	19.5	3,979	20.0	4,078	-99
26-Sep-04	30,494	8,989	0	21,505	23,591	9.8	1,920	20.5	4,006	-2,086
03-Oct-04	30,494	9,038	0	21,456	22,274	10.4	2,012	14.6	2,830	-818
10-Oct-04	30,494	9,913	0	20,581	22,279	4.5	880	13.1	2,578	-1, 69 8
17-Oct-04	30,494	10,357	0	20,137	22,632	0.4	89	12.9	2,584	-2,495
24-Oct-04	30,494	10,333	0	20,161	23,006	-1.0	-208	13.0	2,637	-2,845
31-Oct-04	30,494	7,601	0	22,893	23,558	9.9	2,058	13.1	2,723	-665
07-Nov-04	30,494	6,586	0	23,908	24,711	9.8	2,124	13.4	2,927	-803
14-Nov-04	30,494	6,047	0	24,447	25,100	10.1	2,241	13.0	2,894	-653
21-Nov-04	30,494	6,002	0	24,492	25,650	8.3	1,886	13.5	3,044	-1,158
28-Nov-04	30,494	6,000	0	24,494	25,877	7.4	1,686	13.5	3,069	-1,383
05-Dec-04	30,494	5,151	0	25,343	26,995	7.6	1,778	14.6	3,430	-1,652
12-Dec-04	30,494	4,631	0	25,863	26,994	9.3	2,210	14.1	3,341	-1,131
19-Dec-04	30,494	3,182	0	27,312	27,551	13.8	3,316	14.8	3,555	-239
26-Dec-04	30,494	2,658	0	27,836	27,479	15.8	3,799	14.3	3,442	357
02-Jan-05	30,494	2,742	0	27,752	25,808	23.6	5,303	15.0	3,359	1,944
09-Jan-05	30,494	2,842	0	27,652	26,990	17.8	4,179	15.0	3,517	662
16-Jan-05	30,494	2,744	0	27,750	27,635	14.8	3,569	14.3	3,454	115
23-Jan-05	30,494	2,755	0	27,739	27,606	15.4	3,700	14.8	3,567	133
30-Jan-05	30,494	2,782	0	27,712	27,305	16.5	3,934	14.8	3,527	407
06-Feb-05	30,494	2,865	0	27,629	27,137	15.7	3,744	13.6	3,252	492
13-Feb-05	30,494	3,359	0	27,135	26,999	14.6	3,451	14.0	3,315	136
20-Feb-05	30,494	3,372	0	27,122	26,823	15.6	3,660	14.3	3,361	299
27-Feb-05	30,494	3,946	0	26,548	26,365	15.6	3,586	14.8	3,403	183
06-Mar-05	30,494	3,841	0	26,653	26,234	17.3	3,927	15.4	3,508	419
13-Mar-05	30,494	5,179	0	25,315	25,992	12.4	2,787	15.4	3,464	-677
20-Mar-05	30,494	6,020	0	24,474	25,409	10.4	2,306	14.6	3,241	-935
27-Mar-05	30,494	6,066	0	24,428	25,033	11.9	2,600	14.7	3,205	-605
03-Apr-05	30,494	6,883	0	23,611	24,244	10.6	2,258	13.5	2,891	-633

		Total	Price-							
Week	Total	Reductions	Responsive	Available	Required	Available	Available	Required	Required	Reserve
Ending	Resources	in Resources	Demand	Resources	Resources	Reserve	Reserve	Reserve	Reserve	Margin
Day	MW	MW	MW	MW	MW	%	MW	%	MW	MW
05-Oct-03	30,694	7,223	300	23,771	21,986	24.1	4,621	14.8	2,836	1,785
12-Oct-03	30,694	9,691	300	21,303	22,322	9.4	1,830	14.6	2,849	-1,019
19-Oct-03	30,694	9,189	300	21,805	22,708	10.0	1,985	14.6	2,888	-903
26-Oct-03	30,694	9,180	300	21,814	23,081	8.3	1, 66 7	14.6	2,934	-1,267
02-Nov-03	31,464	9,026	300	22,738	23,582	10.5	2,161	14.6	3,005	-844
09-Nov-03	31,264	8,260	300	23,304	24,758	8.1	1,741	14.8	3,195	-1,454
16-Nov-03	31,264	7,553	300	24,011	25,103	9.1	2,005	14.1	3,097	-1,092
23-Nov-03	31,264	7,510	300	24,054	25,493	7.4	1,647	13.8	3,086	-1,439
30-Nov-03	31,264	7,431	300	24,133	25,625	6. 8	1,525	13.3	3,017	-1,492
07-Dec-03	32,034	5,588	300	26,746	26,795	14.5	3,381	14.7	3,430	-49
14-Dec-03	32,034	5,616	300	26,718	26,757	14.0	3,287	14.2	3,326	-39
21-Dec-03	32,034	5,526	300	26,808	27,257	12.9	3,057	14.8	3,506	-449
28-Dec-03	32,034	3,799	300	28,535	27,146	20.0	4,748	14.1	3,359	1,389
04-Jan-04	32,034	3,789	300	28,545	25,714	29.8	6,557	17.0	3,726	2,831
11-Jan-04	32,034	3,446	300	28,888	27,805	20.1	4,834	15.6	3,751	1,083
18-Jan-04	32,034	3,519	300	28,815	27,733	20.7	4,945	16.2	3,863	1,082
25-Jan-04	32,034	3,537	300	28,797	27,438	22.0	5,183	16.2	3,824	1,359
01-Feb-04	32,034	3,576	300	28,758	27,301	21.0	4,992	14.9	3,535	1,457
08-Feb-04	32,034	4,014	300	28,320	27,067	20.3	4,787	15.0	3,534	1,253
15-Feb-04	32,034	4,040	300	28,294	26,887	21.4	4,980	15.3	3,573	1,407
22-Feb-04	32,034	4,022	300	28,312	26,400	24.1	5,489	15.7	3,577	1,912
29-Feb-04	32,034	4,022	300	28,312	26,227	24.9	5,647	15.7	3,562	2,085
07-Mar-04	32,034	4,581	300	27,753	25,932	23.7	5,319	15.6	3,498	1,821
14-Mar-04	32,034	5,257	300	27,077	25,473	22.7	5,016	15.5	3,412	1,604
21-Mar-04	32,034	5,816	300	26,518	25,060	22.1	4,796	15.4	3,338	1,458
28-Mar-04	32,034	6,766	300	25,568	24,381	20.3	4,322	14.8	3,135	1,187
04-Apr-04	32,034	7,682	300	24,652	24,005	18.4	3,822	15.2	3,175	647
11-Apr-04	32,034	7,146	300	25,188	22,988	26.2	5,234	15.2	3,034	2,200
18-Apr-04	32,034	7,783	300	24,551	22,766	24.3	4,798	15.3	3,013	1,785
25-Apr-04	32,132	7,635	300	24,797	22,288	28.2	5,447	15.2	2,938	2,509
02-May-04	32,132	7,228	300	25,204	22,087	32.7	6,208	16.3	3,091	3,117
09-May-04	32,132	7,337	300	25,095	22,785	33.6	6,317	21.3	4,007	2,310
16-May-04	32,710	7,034	300	25,976	23,831	36.1	6,886	24.8	4,741	2,145
23-May-04	32,710	7,031	300	25,979	24,107	32.1	6,311	22.6	4,439	1,872
30-May-04	32,710	5,673	300	27,337	24,681	35.6	7,182	22.5	4,526	2,656
06-Jun-04	32,710	5,649	300	27,361	25,995	25.3	5,522	19.0	4,156	1,366
13-Jun-04	32,710	5,738	300	27,272	27,017	20.2	4,590	19.1	4,335	255
20-Jun-04	32,710	5,638	300	27,372	27,121	18.7	4,318	17.6	4,067	251
27-Jun-04	32,710	4,830	300	28,180	27,432	22.5	5,173	19.2	4,425	748

Table A2Assessment of Resource Adequacy:Planned Resource Scenario

Note: The reader should be aware that <u>Security and Adequacy Assessments</u> are published on the IMO web site on a weekly and daily basis that progressively supersede information presented in this report

(Table	A2	continued)	
--------	----	------------	--

		Total	Price-							
Week	Total	Reductions	Responsive	Available	Required	Available	Available	Required	Required	Reserve
Ending	Resources	in Resources	Demand	Resources	Resources	Reserve	Reserve	Reserve	Reserve	Margin
Day	MW	MW	MW	MW	MW	%	MW	%	MW	MW
04-Jul-04	32,710	4,210	300	28,800	28,081	21.5	5,098	18.5	4,379	719
11-Jul-04	32,710	4,418	300	28,592	27,919	20.0	4,757	17.1	4,084	673
18-Jul-04	32,710	4,386	300	28,624	27,747	20.3	4,835	16.6	3,958	877
25-Jul-04	32,710	3,635	300	29,375	27,829	23.5	5,587	17.0	4,041	1,546
01-Aug-04	32,710	3,628	300	29,382	27,615	25.3	5,929	17.8	4,162	1,767
08-Aug-04	32,710	3,643	300	29,367	27,800	24.6	5,792	17.9	4,225	1,567
15-Aug-04	32,710	3,676	300	29,334	27,615	24.6	5,789	17.3	4,070	1,719
22-Aug-04	32,710	3,641	300	29,369	27,530	26.1	6,084	18.2	4,245	1,839
29-Aug-04	32,710	3,579	300	29,431	27,784	25.6	5,997	18.6	4,350	1,647
05-Sep-04	32,710	5,307	300	27,703	26,875	24.9	5,514	21.1	4,686	828
12-Sep-04	32,710	6,217	300	26,793	25,025	26.1	5,539	17.7	3,771	1,768
19-Sep-04	32,710	6,214	300	26,796	24,654	31.4	6,401	20.9	4,259	2,142
26-Sep-04	32,710	9,083	300	23,927	23,714	22.2	4,342	21.1	4,129	213
03-Oct-04	32,710	9,132	300	23,878	22,432	22.8	4,434	15.4	2,988	1,446
10-Oct-04	32,710	9,997	300	23,013	22,358	16.8	3,312	13.5	2,657	655
17-Oct-04	32,710	10,441	300	22,569	22,704	12.6	2,521	13.3	2,656	-135
24-Oct-04	32,710	10,417	300	22,593	23,079	10.9	2,224	13.3	2,710	-486
31-Oct-04	32,710	7,685	300	25,325	23,696	21.6	4,490	13.7	2,861	1,629
07-Nov-04	32,710	6,660	300	26,350	24,835	21.0	4,566	14.0	3,051	1,515
14-Nov-04	32,710	6,121	300	26,889	25,225	21.1	4,683	13.6	3,019	1,664
21-Nov-04	32,710	6,076	300	26,934	25,741	19.2	4,328	13.9	3,135	1,193
28-Nov-04	32,710	6,074	300	26,936	25,961	18.1	4,128	13.8	3,153	975
05-Dec-04	32,710	5,225	300	27,785	27,039	17.9	4,220	14.7	3,474	746
12-Dec-04	32,710	4,695	300	28,315	27,095	19.7	4,662	14.6	3,442	1,220
19-Dec-04	32,710	3,246	300	29,764	27,711	24.0	5,768	15.5	3,715	2,053
26-Dec-04	32,710	2,722	300	30,288	27,672	26.0	6,251	15.1	3,635	2,616
02-Jan-05	32,710	2,806	300	30,204	25,991	34.5	7,755	15.8	3,542	4,213
09-Jan-05	32,710	2,906	300	30,104	27,165	28.3	6,631	15.7	3,692	2,939
16-Jan-05	32,710	3,565	300	29,445	27,734	21.8	5,264	14.7	3,553	1,711
23-Jan-05	32,710	3,576	300	29,434	27,708	22.4	5,395	15.3	3,669	1,726
30-Jan-05	32,710	3,603	300	29,407	27,405	23.7	5,629	15.3	3,627	2,002
06-Feb-05	32,710	3,686	300	29,324	27,257	22.8	5,439	14.1	3,372	2,067
13-Feb-05	32,710	4,180	300	28,830	27,080	21.7	5,146	14.3	3,396	1,750
20-Feb-05	32,710	3,436	300	29,574	26,976	26.1	6,112	15.0	3,514	2,598
27-Feb-05	32,710	4,010	300	29,000	26,441	26.3	6,038	15.2	3,479	2,559
06-Mar-05	32,710	3,905	300	29,105	26,437	28.1	6,379	16.3	3,711	2,668
13-Mar-05	32,710	5,243	300	27,767	26,142	23.3	5,239	16.0	3,614	1,625
20-Mar-05	32,710	6,084	300	26,926	25,538	21.5	4,758	15.2	3,370	1,388
27-Mar-05	32,710	6,130	300	26,880	25,189	23.1	5,052	15.4	3,361	1,691
03-Apr-05	32.710	6.947	300	26.063	24.389	22.1	4.710	14.2	3.036	1.674

Table A3 Demand Forecast Range For Required Resources Calculation

Week	Ontario Demand	Ontario Demand
Ending	Normal Weather	Extreme Weather
Day	MW	MW
05-Oct-03	19,150	19,919
12-Oct-03	19,473	20,054
19-Oct-03	19,820	20,731
26-Oct-03	20,147	20,778
02-Nov-03	20,577	21,399
09-Nov-03	21,563	22,712
16-Nov-03	22,006	23,153
23-Nov-03	22,407	23,673
30-Nov-03	22,608	24,112
07-Dec-03	23,365	25,359
14-Dec-03	23,431	25,053
21-Dec-03	23,751	25,742
28-Dec-03	23,787	25,538
04-Jan-04	21,988	24,191
11-Jan-04	24,054	26,023
18-Jan-04	23,870	25,717
25-Jan-04	23,614	25,571
01-Feb-04	23,766	25,253
08-Feb-04	23,533	25,233
15-Feb-04	23,314	25,096
22-Feb-04	22,823	24,391
29-Feb-04	22,665	24,411
07-Mar-04	22,434	24,140
14-Mar-04	22,061	23,671
21-Mar-04	21,722	23,201
28-Mar-04	21,246	22,620
04-Apr-04	20,830	22,645
11-Apr-04	19,954	20,881
18-Apr-04	19,753	20,522
25-Apr-04	19,350	20,254
02-May-04	18,996	19,756
09-May-04	18,778	21,986
16-May-04	19,090	22,059
23-May-04	19,668	22,471
30-May-04	20,155	23,003
06-Jun-04	21,839	25,119
13-Jun-04	22,682	25,730
20-Jun-04	23,054	25,607
27-Jun-04	23,007	26,035

(Table A3 continued)

Week	Ontario Demand	Ontario Demand
Ending	Normal Weather	Extreme Weather
Day	MW	MW
04-Jul-04	23,702	26,440
11-Jul-04	23,835	26,469
18-Jul-04	23,789	25,790
25-Jul-04	23,788	25,813
01-Aug-04	23,453	26,248
08-Aug-04	23,575	26,459
15-Aug-04	23,545	25,738
22-Aug-04	23,285	25,893
29-Aug-04	23,434	26,591
05-Sep-04	22,189	25,363
12-Sep-04	21,254	24,155
19-Sep-04	20,395	23,593
26-Sep-04	19,585	22,696
03-Oct-04	19,444	20,213
10-Oct-04	19,701	20,282
17-Oct-04	20,048	20,960
24-Oct-04	20,369	21,000
31-Oct-04	20,835	21,656
07-Nov-04	21,784	22,932
14-Nov-04	22,206	23,353
21-Nov-04	22,606	23,873
28-Nov-04	22,808	24,312
05-Dec-04	23,565	25,558
12-Dec-04	23,653	25,276
19-Dec-04	23,996	25,986
26-Dec-04	24,037	25,789
02-Jan-05	22,449	24,200
09-Jan-05	23,473	25,413
10-Jan-05	24,101	20,150
23-Jan 05	24,039	25,000
06 Ech 05	23,770	25,755
13-Feb-05	23,005	25,372
20-Feb-05	23,004	25,304
20-1 eb-05	22,402	24 530
06-Mar-05	22,302	24,330
13-Mar-05	22.528	24.234
20-Mar-05	22,168	23.778
27-Mar-05	21.828	23,307
03-Apr-05	21.353	22.727

		Total	Price-							
Week	Total	Reductions	Responsive	Available	Required	Available	Available	Required	Required	Reserve
Ending	Resources	in Resources	Demand	Resources	Resources	Reserve	Reserve	Reserve	Reserve	Margin
Day	MW	MW	MW	MW	MW	%	MW	%	MW	MŴ
05-Oct-03	30,694	7,213	0	23,481	22,635	17.9	3,562	13.6	2,716	846
12-Oct-03	30,694	9,681	0	21,013	22,851	4.8	959	14.0	2,797	-1,838
19-Oct-03	30,694	9,135	0	21,559	23,581	4.0	828	13.8	2,850	-2,022
26-Oct-03	30,694	9,165	0	21,529	23,623	3.6	751	13.7	2,845	-2,094
02-Nov-03	30,694	8,920	0	21,774	24,313	1.8	375	13.6	2,914	-2,539
09-Nov-03	30,494	8,242	0	22,252	25,738	-2.0	-460	13.3	3,026	-3,486
16-Nov-03	30,494	7,535	0	22,959	26,160	-0.8	-194	13.0	3,007	-3,201
23-Nov-03	30,494	7,492	0	23,002	26,573	-2.8	-671	12.3	2,900	-3,571
30-Nov-03	30,494	7,413	0	23,081	26,948	-4.3	-1,031	11.8	2,836	-3,867
07-Dec-03	30,494	5,562	0	24,932	28,302	-1.7	-427	11.6	2,943	-3,370
14-Dec-03	30,494	5,590	0	24,904	27,975	-0.6	-149	11.7	2,922	-3,071
21-Dec-03	30,494	5,500	0	24,994	28,714	-2.9	-748	11.6	2,972	-3,720
28-Dec-03	30,494	3,773	0	26,721	28,525	4.6	1,183	11.7	2,987	-1,804
04-Jan-04	30,494	3,763	0	26,731	27,257	10.5	2,540	12.7	3,066	-526
11-Jan-04	30,494	3,420	0	27,074	29,362	4.0	1,051	12.8	3,339	-2,288
18-Jan-04	30,494	3,493	0	27,001	29,034	5.0	1,284	12.9	3,317	-2,033
25-Jan-04	30,494	3,511	0	26,983	28,880	5.5	1,412	12.9	3,309	-1,897
01-Feb-04	30,494	3,550	0	26,944	28,502	6.7	1,691	12.9	3,249	-1,558
08-Feb-04	30,494	3,988	0	26,506	28,448	5.0	1,273	12.7	3,215	-1,942
15-Feb-04	30,494	4,014	0	26,480	28,302	5.5	1,384	12.8	3,206	-1,822
22-Feb-04	30,494	3,996	0	26,498	27,501	8.6	2,107	12.8	3,110	-1,003
29-Feb-04	30,494	3,996	0	26,498	27,522	8.6	2,087	12.7	3,111	-1,024
07-Mar-04	30,494	4,555	0	25,939	27,224	7.5	1,799	12.8	3,084	-1,285
14-Mar-04	30,494	4,461	0	26,033	26,757	10.0	2,362	13.0	3,086	-724
21-Mar-04	30,494	4,977	0	25,517	26,220	10.0	2,316	13.0	3,019	-703
28-Mar-04	30,494	5,882	0	24,612	25,453	8.8	1,992	12.5	2,833	-841
04-Apr-04	30,494	6,801	0	23,693	25,583	4.6	1,048	13.0	2,938	-1,890
11-Apr-04	30,494	6,276	0	24,218	23,676	16.0	3,337	13.4	2,795	542
18-Apr-04	30,494	7,684	0	22,810	23,305	11.2	2,288	13.6	2,783	-495
25-Apr-04	30,494	7,537	0	22,957	22,900	13.4	2,703	13.1	2,646	57
02-May-04	30,494	7,125	0	23,369	22,552	18.3	3,613	14.2	2,796	817
09-May-04	30,494	7,250	0	23,244	24,901	5.7	1,258	13.3	2,915	-1,657
16-May-04	30,494	6,942	0	23,552	25,097	6.8	1,493	13.8	3,038	-1,545
23-May-04	30,494	6,920	0	23,574	25,542	4.9	1,103	13.7	3,071	-1,968
30-May-04	30,494	5,567	0	24,927	26,136	8.4	1,924	13.6	3,133	-1,209
06-Jun-04	30,494	5,504	0	24,990	28,207	-0.5	-129	12.3	3,088	-3,217
13-Jun-04	30,494	4,818	0	25,676	29,034	-0.2	-54	12.8	3,304	-3,358
20-Jun-04	30,494	4,732	0	25,762	28,895	0.6	155	12.8	3,288	-3,133
27-Jun-04	30,494	3,922	0	26,572	29,339	2.1	537	12.7	3,304	-2,767

Table A4Assessment of Resource Adequacy: <u>Extreme Weather</u>,Existing Resource Scenario

(Table A4 continued)

		Total	Price-							
Week	Total	Reductions	Responsive	Available	Required	Available	Available	Required	Required	Reserve
Ending	Resources	in Resources	Demand	Resources	Resources	Reserve	Reserve	Reserve	Reserve	Margin
Day	MW	MW	MW	MW	MW	%	MW	%	MW	MW
04-Jul-04	30,494	3,299	0	27,195	29,793	2.9	755	12.7	3,353	-2,598
11-Jul-04	30,494	3,499	0	26,995	29,829	2.0	526	12.7	3,360	-2,834
18-Jul-04	30,494	3,457	0	27,037	29,094	4.8	1,247	12.8	3,304	-2,057
25-Jul-04	30,494	3,466	0	27,028	29,119	4.7	1,215	12.8	3,306	-2,091
01-Aug-04	30,494	3,439	0	27,055	29,556	3.1	807	12.6	3,308	-2,501
08-Aug-04	30,494	3,441	0	27,053	29,788	2.2	594	12.6	3,329	-2,735
15-Aug-04	30,494	3,497	0	26,997	29,013	4.9	1,259	12.7	3,275	-2,016
22-Aug-04	30,494	3,450	0	27,044	29,181	4.5	1,151	12.7	3,288	-2,137
29-Aug-04	30,494	3,381	0	27,113	29,933	2.0	522	12.6	3,342	-2,820
05-Sep-04	30,494	5,101	0	25,393	28,654	0.1	30	13.0	3,291	-3,261
12-Sep-04	30,494	6,062	0	24,432	27,192	1.2	277	12.6	3,037	-2,760
19-Sep-04	30,494	6,097	0	24,397	26,594	3.4	804	12.7	3,001	-2,197
26-Sep-04	30,494	8,970	0	21,524	25,657	-5.2	-1,172	13.1	2,961	-4,133
03-Oct-04	30,494	8,989	0	21,505	22,990	6.4	1,292	13.7	2,777	-1,485
10-Oct-04	30,494	9,860	0	20,634	22,804	1.7	352	12.4	2,522	-2,170
17-Oct-04	30,494	10,282	0	20,212	23,503	-3.6	-748	12.1	2,543	-3,291
24-Oct-04	30,494	10,249	0	20,245	23,546	-3.6	-755	12.1	2,546	-3,301
31-Oct-04	30,494	7,518	0	22,976	24,319	6.1	1,320	12.3	2,663	-1,343
07-Nov-04	30,494	6,492	0	24,002	25,716	4.7	1,070	12.1	2,784	-1,714
14-Nov-04	30,494	5,943	0	24,551	26,185	5.1	1,198	12.1	2,832	-1,634
21-Nov-04	30,494	5,903	0	24,591	26,760	3.0	718	12.1	2,887	-2,169
28-Nov-04	30,494	5,876	0	24,618	27,231	1.3	306	12.0	2,919	-2,613
05-Dec-04	30,494	5,014	0	25,480	28,632	-0.3	-78	12.0	3,074	-3,152
12-Dec-04	30,494	4,507	0	25,987	28,359	2.8	711	12.2	3,083	-2,372
19-Dec-04	30,494	3,046	0	27,448	29,145	5.6	1,462	12.2	3,159	-1,697
26-Dec-04	30,494	2,542	0	27,952	28,960	8.4	2,163	12.3	3,171	-1,008
02-Jan-05	30,494	2,624	0	27,870	27,137	15.2	3,670	12.1	2,937	733
09-Jan-05	30,494	2,699	0	27,795	28,455	9.4	2,382	12.0	3,042	-660
16-Jan-05	30,494	2,636	0	27,858	29,251	6.5	1,708	11.9	3,101	-1,393
23-Jan-05	30,494	2,646	0	27,848	28,967	7.6	1,962	11.9	3,081	-1,119
30-Jan-05	30,494	2,660	0	27,834	28,802	8.2	2,099	11.9	3,067	- 96 8
06-Feb-05	30,494	2,767	0	27,727	28,426	9.3	2,355	12.0	3,054	-699
13-Feb-05	30,494	3,230	0	27,264	28,430	7.4	1,880	12.0	3,046	-1,166
20-Feb-05	30,494	3,254	0	27,240	28,277	7.9	1,996	12.0	3,033	-1,037
27-Feb-05	30,494	3,822	0	26,672	27,461	8.7	2,142	12.0	2,931	-789
06-Mar-05	30,494	3,742	0	26,752	27,650	9.3	2,280	13.0	3,178	- 89 8
13-Mar-05	30,494	5,080	0	25,414	27,403	4.9	1,180	13.1	3,169	-1,989
20-Mar-05	30,494	5,925	0	24,569	26,772	3.3	791	12.6	2,994	-2,203
27-Mar-05	30,494	5,953	0	24,541	26,263	5.3	1,234	12.7	2,956	-1,722
03-Apr-05	30,494	6,782	0	23,712	25,373	4.3	985	11.6	2,646	-1,661

		Total	Price-							
Week	Total	Reductions	Responsive	Available	Required	Available	Available	Required	Required	Reserve
Ending	Resources	in Resources	Demand	Resources	Resources	Reserve	Reserve	Reserve	Reserve	Margin
Day	MW	MW	MW	MW	MW	%	MW	%	MW	MW
05-Oct-03	30,694	7,213	300	23,781	22,635	19.4	3,862	13.6	2,716	1,146
12-Oct-03	30,694	9,681	300	21,313	22,851	6.3	1,259	14.0	2,797	-1,538
19-Oct-03	30,694	9,135	300	21,859	23,581	5.4	1,128	13.8	2,850	-1,722
26-Oct-03	30,694	9,165	300	21,829	23,623	5.1	1,051	13.7	2,845	-1,794
02-Nov-03	31,464	8, 94 3	300	22,821	24,348	6.7	1,422	13.8	2,949	-1,527
09-Nov-03	31,264	8,260	300	23,304	25,769	2.6	592	13.5	3,057	-2,465
16-Nov-03	31,264	7,553	300	24,011	26,190	3.7	858	13.1	3,037	-2,179
23-Nov-03	31,264	7,510	300	24,054	26,607	1.6	381	12.4	2,934	-2,553
30-Nov-03	31,264	7,431	300	24,133	26,980	0.1	21	11.9	2,868	-2,847
07-Dec-03	32,034	5,588	300	26,746	28,366	5.5	1,387	11.9	3,007	-1,620
14-Dec-03	32,034	5,616	300	26,718	28,038	6.7	1,665	11.9	2,985	-1,320
21-Dec-03	32,034	5,526	300	26,808	28,776	4.1	1,066	11.8	3,034	-1,968
28-Dec-03	32,034	3,799	300	28,535	28,587	11.7	2,997	11.9	3,049	-52
04-Jan-04	32,034	3,789	300	28,545	27,319	18.0	4,354	12.9	3,128	1,226
11-Jan-04	32,034	3,446	300	28,888	29,422	11.0	2,865	13.1	3,399	-534
18-Jan-04	32,034	3,519	300	28,815	29,095	12.1	3,098	13.1	3,378	-280
25-Jan-04	32,034	3,537	300	28,797	28,940	12.6	3,226	13.2	3,369	-143
01-Feb-04	32,034	3,576	300	28,758	28,562	13.9	3,505	13.1	3,309	196
08-Feb-04	32,034	4,014	300	28,320	28,510	12.2	3,087	13.0	3,277	-190
15-Feb-04	32,034	4,040	300	28,294	28,363	12.7	3,198	13.0	3,267	-69
22-Feb-04	32,034	4,022	300	28,312	27,562	16.1	3,921	13.0	3,171	750
29-Feb-04	32,034	4,022	300	28,312	27,583	16.0	3,901	13.0	3,172	729
07-Mar-04	32,034	4,581	300	27,753	27,286	15.0	3,613	13.0	3,146	467
14-Mar-04	32,034	5,244	300	27,090	26,788	14.4	3,419	13.2	3,117	302
21-Mar-04	32,034	5,760	300	26,574	26,251	14.5	3,373	13.2	3,050	323
28-Mar-04	32,034	6,665	300	25,669	25,486	13.5	3,049	12.7	2,866	183
04-Apr-04	32,034	7,584	300	24,750	25,616	9.3	2,105	13.1	2,9/1	-866
11-Apr-04	32,034	7,059	300	25,275	23,760	21.0	4,394	13.8	2,879	1,515
18-Apr-04	32,034	7,710	300	24,624	23,398	20.0	4,102	14.0	2,876	1,220
25-Apr-04	32,132	7,003	300	24,009	23,074	22.0	4,010	15.9	2,020	1,795
02-IVidy-04	32,132	7,151	300	20,201	22,141	20.0	0,020 0.470	10.1	2,991	2,004
09-IVIAy-04	32,132	7,276	300	25,150	24,979	14.4	3,170	13.0	2,993	1//
22 May 04	32,710	6,0590	300	26,020	25,295	15.0	3,501	14.7	3,234	224
20 May 04	32,710	0,900 E C1E	200	20,042	20,700	10.9	3,571	14.4	3,231	4.050
06 Jun 04	32,710	5,015	200	27,500	20,040	0.2	4,092	14.5	3,340	925
12 Jun 04	32,/10	5,002	200	21,400	20,200	5.3 6.4	2,000	12.0	3,104	-020
20 Jun 04	32,/10	5,042	300	27,500	23,070	0.4	1,000	13.0	3,340	-1,/00
20-JUII-04	32,/10	0,000 A 740	200	21,402	20,900	1.4	1,040	13.0	3,331	-1,400
21-JUI1-04	32,/10	4,/40	300	20,202	29,301	0.0	2,221	12.9	3,340	-1,119

Table A5 Assessment of Resource Adequacy: Extreme Weather, Planned Resource Scenario

(Table A5	continued)
-----------	------------

		Total	Price-							
Week	Total	Reductions	Responsive	Available	Required	Available	Available	Required	Required	Reserve
Ending	Resources	in Resources	Demand	Resources	Resources	Reserve	Reserve	Reserve	Reserve	Margin
Day	MW	MW	MW	MW	MW	%	MW	%	MW	MW
04-Jul-04	32,710	4,125	300	28,885	29,835	9.3	2,445	12.8	3,395	-950
11-Jul-04	32,710	4,344	300	28,666	29,872	8.3	2,197	12.9	3,403	-1,206
18-Jul-04	32,710	4,302	300	28,7 0 8	29,137	11.3	2,918	13.0	3,347	-429
25-Jul-04	32,710	3,564	300	29,446	29,189	14.1	3,633	13.1	3,376	257
01-Aug-04	32,710	3,537	300	29,473	29,628	12.3	3,225	12.9	3,380	-155
08-Aug-04	32,710	3,549	300	29,461	29,858	11.4	3,002	12.9	3,399	-397
15-Aug-04	32,710	3,605	300	29,405	29,084	14.3	3,667	13.0	3,346	321
22-Aug-04	32,710	3,558	300	29,452	29,251	13.8	3,559	13.0	3,358	201
29-Aug-04	32,710	3,489	300	29,521	30,004	11.0	2,930	12.8	3,413	-483
05-Sep-04	32,710	5,195	300	27,815	28,724	9.7	2,452	13.3	3,361	-909
12-Sep-04	32,710	6,156	300	26,854	27,264	11.2	2,699	12.9	3,109	-410
19-Sep-04	32,710	6,191	300	26,819	26,665	13.7	3,226	13.0	3,072	154
26-Sep-04	32,710	9,064	300	23,946	25,731	5.5	1,250	13.4	3,035	-1,785
03-Oct-04	32,710	9,083	300	23,927	23,090	18.4	3,714	14.2	2,877	837
10-Oct-04	32,710	9,944	300	23,066	22,883	13.7	2,784	12.8	2,601	183
17-Oct-04	32,710	10,366	300	22,644	23,582	8.0	1,684	12.5	2,622	-938
24-Oct-04	32,710	10,333	300	22,677	23,627	8.0	1,677	12.5	2,627	-950
31-Oct-04	32,710	7,602	300	25,408	24,395	17.3	3,752	12.7	2,739	1,013
07-Nov-04	32,710	6,566	300	26,444	25,791	15.3	3,512	12.5	2,859	653
14-Nov-04	32,710	6,017	300	26,993	26,260	15.6	3,640	12.5	2,907	733
21-Nov-04	32,710	5,977	300	27,033	26,835	13.2	3,160	12.4	2,962	198
28-Nov-04	32,710	5,950	300	27,060	27,307	11.3	2,748	12.3	2,995	-247
05-Dec-04	32,710	5,088	300	27,922	28,704	9.3	2,364	12.3	3,146	-782
12-Dec-04	32,710	4,571	300	28,439	28,434	12.5	3,163	12.5	3,158	5
19-Dec-04	32,710	3,110	300	29,900	29,218	15.1	3,914	12.4	3,232	682
26-Dec-04	32,710	2,606	300	30,404	29,035	17.9	4,615	12.6	3,246	1,369
02-Jan-05	32,710	2,688	300	30,322	27,336	25.3	6,122	13.0	3,136	2,986
09-Jan-05	32,710	2,763	300	30,247	28,545	19.0	4,834	12.3	3,132	1,702
16-Jan-05	32,710	3,457	300	29,553	29,296	13.0	3,403	12.0	3,146	257
23-Jan-05	32,710	3,467	300	29,543	29,009	14.1	3,657	12.1	3,123	534
30-Jan-05	32,710	3,481	300	29,529	28,846	14.7	3,794	12.1	3,111	683
06-Feb-05	32,710	3,588	300	29,422	28,469	16.0	4,050	12.2	3,097	953
13-Feb-05	32,710	4,051	300	28,959	28,474	14.1	3,575	12.2	3,090	485
20-Feb-05	32,710	3,318	300	29,692	28,352	17.6	4,448	12.3	3,108	1,340
27-Feb-05	32,710	3,886	300	29,124	27,554	18.7	4,594	12.3	3,024	1,570
06-Mar-05	32,710	3,806	300	29,204	27,745	19.3	4,732	13.4	3,273	1,459
13-Mar-05	32,710	5,144	300	27,866	27,478	15.0	3,632	13.4	3,244	388
20-Mar-05	32,710	5,989	300	27,021	26,849	13.6	3,243	12.9	3,071	172
27-Mar-05	32,710	6,017	300	26,993	26,338	15.8	3,686	13.0	3,031	655
03-Apr-05	32.710	6.846	300	26.164	25.455	15.1	3.437	12.0	2.728	709

Month	Forecast Energy Production Capability Existing Resource Scenario (GWh)	Forecast Energy Production Capability Planned Resource Scenario (GWh)
Oct 2003	13,319	13,408
Nov 2003	13,798	14,404
Dec 2003	16,027	16,614
Jan 2004	16,715	17,389
Feb 2004	15,356	16,019
Mar 2004	15,281	16,321
Apr 2004	13,668	14,711
May 2004	13,308	14,661
Jun 2004	15,693	16,695
Jul 2004	16,495	17,708
Aug 2004	16,391	17,827
Sep 2004	14,199	15,602
Oct 2004	13,814	15,037
Nov 2004	14,501	15,539
Dec 2004	16,930	18,431
Jan 2005	17,279	18,756
Feb 2005	14,901	16,236
Mar 2005	15,061	16,538

Table A6 Energy Production Capability Forecast

- End of Section -

This page intentionally left blank.

Appendix B Transmission Projects

East Zone	Projected I/S Date
Chenaux TS: Add two new 230 kV breakers. Reconnect T4 transformer.	2003-Q4
Mountain Chute - Chenaux SPS: Modify the SPS to include the new breakers.	2003-Q4
Sidney TS: Replace low voltage capacitor bank circuit breaker SC1Q.	2003-Q4
Essa Zone	Projected I/S Date
Owen Sound TS: Replace transformer T5 230 kV disconnect switch.	2003-Q4
Midhurst TS: Expand existing transformer station.	2004-Q4
Niagara Zone	Projected I/S Date
Norfolk TS: Replace transformers with two 83.3 MVA units.	2003-Q4
Bloomsburg TS: New 115/27.6 kV transformer station connected to A1N.	2004-Q2
Kalar TS: New 115/14.2 kV transformer station off lines A36N and A37N.	2004-Q2
Northeast Zone	Projected I/S Date
Wawa TS: Install reactive compensation; 2x40 MVAr shunt ractors, 2x39.8 MVAr shunt	2003-Q4
GLP Tranmission Reinforcement Stage1: Remove from service 115 kV circuit No.3 Sault.	2004-Q2
Northwest Zone	Projected I/S Date
Birch TS: Install 80 MVAr shunt capacitor.	2003-Q4
Fort William TS: Install in-line switches for circuits Q4B and Q5B.	2003-Q4
Ottawa Zone	Projected I/S Date
Albion TS: Replace 230 kV rod gaps with metal oxide surge arresters.	2004-Q1
Hawthorne TS: Add one 250 MVA 230/115 kV autotransformer and one new double circuit line from Hawthorne to Blackburn Jct.	2004-Q2
Ottawa Area: Add 115 kV breaker to W6MC and motorize existing disconnect on C7MB.	2004-Q2
Hawthorne TS: Replace 115 kV shunt capacitor.	2004-Q4
Merivale TS: Replace 115 kV breakers L1LT22, L1L5, L3L12 and associated disconnect	
switches.	2004-Q4
Southwest Zone	Projected I/S Date
Bronte TS: Install two new feeders.	2003-Q4
Goderich TS: Replace capacitor bank circuit breaker SC1B.	2003-Q4
Kenilworth TS: Replace 115 kV line disconnect and grounding switches	2003-Q4
Kenilworth TS: Replace 115 kV rod gaps with metal oxide surge arresters	2003-04
Kenilworth TS: Replace 115 kV transformer disconnect and grounding switches	2003-04
I ondon Clarke TS: Increase transformer ampacity	2003-04
Mohawk TS: Replace low voltage capacitor banks SC2 and SC3	2003-04
Nanticoke TGS: Replace station service transformers	2003-04
St Marys TS: Add two new feeders	2003-Q4
St. Marys TS: Rofurbish 115 kV station	2003-Q4
St. Marys TS. Refulbish TTS KV station.	2003-Q4
Nayara West 13. Dullu new iransionnel station with two 50/07/05 WVA transformers.	2004-01
Durlington TC: Add 125 MV/Ar 115 kV oppositor bank	2004-01
Duningion 15. Add two new 75/125 MVA 220/115 kV capacitor Dank.	2004-Q2
Caleuonia 15. Aud two new 75/125 NVA 250/115 KV autotransformers and re-supply	2004-Q2
Halton TS: Install two additional 27.6 kV breakers	2004 02
Datweiler TS: Deplace 115/230 kV autotransformer T2	2004-02
Kitchener: Ruild new 230/14.2 kV transformer station	2004-02
Reach TS: Install surge arresters on TA and T7	2004-03
	· · · · · · · · · · · · · · · · · · ·

(Appendix B continued)

Toronto Zone	Projected I/S Date
Cecil TS: Increase station capacity.	2003-Q4
Glengrove TS: Refurbish 115 kV station.	2003-Q4
Glengrove TS: Replace T2 transformer.	2003-Q4
Lakeview SS: Replace 230 kV circuit breakers L24T7 and L24T8.	2003-Q4
Leaside TS: Install series reactors on 13.8 kV capacitor banks SC1 and SC2.	2003-Q4
Leaside TS: Replace 115 kV line disconnect switch.	2003-Q4
Manby TS: Replace 115 kV and 230 kV rod gaps with metal oxide surge arresters.	2003-Q4
Manby TS: Replace 115 kV and 230 kV transformer disconnect switches.	2003-Q4
Markham MTS #1: Add 19.6 MVAr at 27.6 kV shunt capacitor.	2003-Q4
Markham MTS #3: Adding 19.6 MVAr at 27.6 kV shunt capacitor.	2003-Q4
Richview TS: Replace 230 kV breaker disconnect switches.	2003-Q4
Runnymede TS: Replace low voltage capacitor banks SC3 and SC4.	2003-Q4
Strachan TS: Replace 115 kV grounding switch and transformer disconnect switch.	2003-Q4
Cherrywood TS: Reterminate 500/230 kV autotransformers.	2004-Q2
Kleinburg TS: Install two additional 27.6 kV breakers.	2004-Q2
Leaside TS: Install 125 MVAr shunt capacitor.	2004-Q2
Strachan TS: Replace 115 kV rod gaps with metal oxide surge arresters.	2004-Q2
Markham: New transformer station connected to 230 kV circuits C11R and C12R.	2004-Q3
Pickering A NGS: Refurbish 230 kV switchyard - G1.	2004-Q3
Wiltshire TS: Replacement of transformer T6.	2004-Q3
Manby West TS: Install surge arresters on T3 and T4.	2004-Q4
Manby West TS: Replace T4 with like unit.	2004-Q4
Richview TS: Replace 230 kV rod gaps with surge arresters.	2004-Q4

West Zone	Projected I/S Date
Lambton TS: Modify low voltage supply to Terra Nitrogen.	2003-Q4
London Highbury TS: Replace low voltage capacitor bank SC2.	2003-Q4
Windsor Area: Enhance Windsor Area Overload Protection Scheme.	2004-Q1
Belle River East DS: Build new 115/27.6 kV distribution station.	2004-Q2
Kent TS: Install new 125 MVA 230/115 kV autotransformer.	2004-Q4
Tilsonburg TS: Replace three transformers with like units.	2004-Q4

- End of Section -

Appendix C Planned Transmission Outages

The following tables list the planned transmission outages by transmission zone, for transmission outages with an expected duration of six days or greater, and/or for those transmission outages associated with a major project.

Table C1 Bruce Zone

No outages to analyze.

Start Date/Time	End Date/Time	Equipment	Outage	Recall	Impact	Reduction in Limit
			Туре			
11/3/03 7:00 AM	11/3/03 6:00 PM	Chenaux TS.A4_BUS, Chenaux TS.A1A4, Chenaux TS.4-X1P, Chenaux TS.A1-A2, Chenaux TS.A3-A4, Chenaux TS.4X6, Chenaux TS.4X1P, Chenaux TS.4X2Y, Chenaux TS.UFLS	DNW	Non- Recallable	All Chenaux generation is constrained off. Limits the amount of load that can be supported in the Renfrew area from Des Joachims. Approximately 55 and 75 MW of load can be supplied without and with generation support from Quebec, respectively. Renfrew area demand estimated at a peak of 110 MW to an off peak of 75 MW.	
11/4/03 7:00 AM	11/9/03 6:00 PM	X1P, Chenaux TS.A3-A4, Chenaux TS.A1-A2, Chenaux TS.4X6, Chenaux TS.4X1P, Chenaux TS.4-X1P	CWW	24 Hour	Chenaux G5 to G8 generation is constrained off. Limits the amount of load that can be supported in the Renfrew area from Des Joachims. Approximately 55 and 75 MW of load can be supplied without and with generation support from Quebec, respectively. With no Quebec support, approx. 95 MW can be supplied with generation support from Chenaux G1 to G4. With Quebec and Chenaux support, approx. 115 MW can be supplied. Renfrew area demand estimated at a peak of 75 MW. Hydroelectric production capability is a concern.	
11/10/03 5:00 AM	12/19/03 11:00 AM	Chenaux TS.A1-A2	CWW	Non- Recallable	November 10-14: See outage below. November 14-December 19: No impact.	
11/10/03 7:00 AM	11/14/03 6:00 PM	Chenaux TS.A3-A4, Chenaux TS.A1-A2, Chenaux TS.4X2Y, Chenaux TS.A1A4	CWW	24 Hour	Chenaux G1 to G4 generation is constrained off.	
12/19/03 7:00 AM	12/19/03 11:00 AM	Chenaux TS.T4, Chenaux TS.A1-A2, Chenaux TS.4X6	DNW	4 Hour	Chenaux G5 to G8 generation is constrained off.	

Table C2 East Zone

Table C3 Essa Zone

No outages to analyze.

Table C4 Niagara Zone

Start Date/Time	End Date/Time	Equipment	Outage Type	Recall	Impact	Reduction in Limit
09/22/03 05:00 AM	10/17/03 06:00 PM	Murray TS.T13	CWW	2 Day		

Table C5 Northeast Zone

Start Date/Time	End Date/Time	Equipment	Outage	Recall	Impact	Reduction in Limit
			Туре			
10/6/03 7:01 AM	10/17/03 3:01 PM	Anjigami TS 854	CWW	12 Day		
10/20/03 7:01 AM	10/31/03 3:01 PM	Anjigami TS 864	CWW	12 Day		
5/10/04 10:00 AM	6/4/04 2:00 PM	Pinard TS.PL20	CWW	Non- Recallable		
6/7/04 10:00 AM	7/2/04 2:00 PM	Pinard TS.PL22	CWW	Non- Recallable		

Table C6 Northwest Zone

Start Date/Time	End Date/Time	Equipment	Outage Type	Recall	Impact	Reduction in Limit
6/16/03 12:35 PM	6/16/04 11:59 PM	Agimak T1, Agimak T2	CNW	Non- Recallable		
12/15/03 12:01 AM	12/21/03 11:59 PM	Thunder Bay C1	CWW	Non- Recallable		
6/14/04 12:01 AM	6/27/04 11:59 PM	Thunder Bay C1	CWW	Non- Recallable		
12/13/04 12:01 AM	12/19/04 11:59 PM	Thunder Bay C1	CWW	Non- Recallable		

Table C7 Ottawa Zone

Start Date/Time	End Date/Time	Equipment	Outage Type	Recall	Impact	Reduction in Limit
9/29/03 6:00 AM	10/10/03 4:00 PM	Merivale TS.L12_BUS	CWW	8 Hour		
10/14/03 6:00 AM	11/7/03 4:00 PM	Merivale TS.L1LT22	CWW	Non- Recallable		
10/14/03 6:00 AM	10/17/03 4:00 PM	Merivale TS.LT22_BUS	CWW	8 Hour		
10/14/03 7:00 AM	11/8/03 4:00 PM	King Edward TS.T3	CWW	48 Hour		
10/27/03 6:00 AM	11/28/03 4:00 PM	Merivale TS.L1L5	CWW	Non- Recallable		
10/27/03 6:00 AM	11/7/03 4:00 PM	Merivale TS.L1_BUS, Merivale TS.SC11, Chesterville TS.73L2M-6 -I/S	CWW	8 Hour		
11/17/03 6:00 AM	11/28/03 4:00 PM	Merivale TS.T2_115, Merivale TS.L5 BUS	CWW	8 Hour		

Table C8 Southwest Zone

Start Date/Time	End Date/Time	Equipment	Outage Type	Recall	Impact	Reduction in Limit
7/25/03 6:00 AM	10/31/03 5:00 PM	St.Marys TS.T2, St.Marys TS.Y_BUS, St.Marys TS.A2_BUS, St.Marys TS.M1, St.Marys TS.M3	CWW	Non- Recallable		
10/6/03 5:00 AM	11/7/03 6:00 PM	Burlington TS.T6	CWW	5 Day		
10/06/03 01:10 PM	10/31/03 01:30 PM	Elgin TS.T2	DWW	5 Minute		
10/20/03 5:00 AM	10/25/03 6:00 PM	Elgin TS.T4, Elgin TS.H1-H2,	CWW	2 Day		
10/27/03 05:00 AM	10/29/03 06:00 PM	Stirton TS.48HL3-28, Elgin TS.H1-H2	CWW	2 Day		
11/03/03 07:30 AM	11/08/03 04:00 PM	Elgin TS.T1, Elgin TS.T3, Elgin TS.HL4-48, Elgin TS.A1-A2, Elgin TS.T1-A1, Newton TS.26HL4	CWW	8 Hour		
11/10/03 07:30 AM	11/12/03 04:00 PM	Elgin TS.T1, Elgin TS.T1-A1, Elgin TS.A1-A2, Elgin TS.HL4- 48, Stirton TS.48HL4-28	CWW	8 Hour		

Table C9 Toronto Zone

Start Date/Time	End Date/Time	Equipment	Outage	Recall	Impact	Reduction in Limit
			Туре			
9/8/03 5:00 AM	10/10/03 6:00 PM	Cecil TS.L5L9	CWW	4 Week		
9/29/03 7:00 AM	10/10/03 3:00 PM	Manby West TS.YRSS1	CWW	2 Day		
9/29/03 7:00 AM	10/10/03 3:00 PM	Fairchild TS.BY	CWW	3 Day		
10/20/03 5:00 AM	11/21/03 6:00 PM	Fairchild TS.T3, Fairchild TS.T3Q, Fairchild TS.T3J	CWW	5 Day		
10/20/03 8:00 AM	10/31/03 3:00 PM	Runnymede TS.T3B	CWW	2 Day		
11/3/03 5:00 AM	12/5/03 6:00 PM	Cecil TS.PL12	CWW	4 Week		
11/3/03 5:00 AM	11/28/03 6:00 PM	Lakeview SS.L24CR_Terminal, Lakeview SS.T7_230, Lakeview SS.T8_230, Lakeview SS.RSS4_BUS	CWW	48 Hour		
11/3/03 8:00 AM	11/14/03 3:00 PM	Manby East TS.QRSS2	CWW	2 Day		
11/10/03 8:00 AM	11/21/03 3:00 PM	Carlaw TS.T2	CWW	4 Day		
12/15/03 7:00 AM	12/31/03 3:00 PM	Claireville TS.D2_BUS	CWW	72 Hour		
10/3/04 5:00 AM	10/3/04 6:00 PM	Manby West TS.T4, Manby West TS.T4Y	DNW	8 Hour		
10/4/04 5:00 AM	11/26/04 6:00 PM	Manby West TS.T4, Manby West TS.T4Y	CWW	3 Week		
11/27/04 5:00 AM	11/27/04 6:00 PM	Manby West TS.T4, Manby West TS.T4Y	DNW	8 Hour		

Table C10 West Zone

Start Date/Time	End Date/Time	Equipment	Outage Type	Recall	Impact	Reduction in Limit
9/29/03 4:00 AM	10/17/03 6:00 PM	Sarnia Scott TS.AL25	CWW	Non-		
				Recallable		

- End of Document -